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Degree Sequences and the Existencelofactors
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Abstract We consider sufficient conditions for a degree sequente be forcibly
k-factor graphical. We note that previous work on degreesfaabrs has focused
primarily on finding conditions for a degree sequence to kiemi@lly k-factor graph-
ical.

We first give a theorem forr to be forcibly 1-factor graphical and, more gener-
ally, forcibly graphical with deficiency at mog& > 0. These theorems are equal in
strength to Chétal's well-known hamiltonian theorem, i.e., the best ntone de-
gree condition for hamiltonicity. We then give an equallyosg theorem fornr to
be forcibly 2-factor graphical. Unfortunately, the numbé&nonredundant conditions
that must be checked increases significantly in moving fkeml tok = 2, and we
conjecture that the number of nonredundant conditions iasi imonotone theorem
for ak-factor will increase superpolynomially i

This suggests the desirability of finding a theoremfioto be forcibly k-factor
graphical whose algorithmic complexity grows more slovythe final section, we
present such a theorem for aky> 2, based on Tutte’s well-known factor theorem.
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While this theorem is not best monotone, we show that it is nlegkess tight in a
precise way, and give examples illustrating this tightness

Keywords k-factor- degree sequencéest monotone condition
Mathematics Subject Classification (2000)05C70- 05C07

1 Introduction

We consider only undirected graphs without loops or mudtigdiges. Our terminol-
ogy and notation will be standard except as indicated, anabd geference for any
undefined terms or notation is [4].

A degree sequena® a graph om vertices is any sequenge= (di,dy,...,dn)
consisting of the vertex degrees of the graph. In contrat]tave will usually as-
sume the sequence is in nondecreasing order. We generealthestandard abbre-
viated notation for degree sequences, €414,4,4,4,5,5) will be denoted 35°. A
sequence of integers= (di,dy, ..., dy) is calledgraphicalif there exists a grap®
having 1T as one of its degree sequences, in which case wécalealizationof 7.

If m=(dy,...,dy) and 7 = (dj,...,d,) are two integer sequences, we g#yma-
jorizes, denoted > , if dj > dj for 1 < j <n. If Pis a graphical property (e.g.,
k-connected, hamiltonian), we call a graphical degree semiercibly (respectively,
potentially) P graphicalif every (respectively, some) realization mhas property.

Historically, the degree sequence of a graph has been uggdtie sufficient
conditions for a graph to have a certain property, sudk@mnected or hamiltonian.
Sufficient conditions for a degree sequence to be forcibigiltanian were given by
several authors, culminating in the following theorem of/&tal [6] in 1972.

Theorem 1 [6] Letrr=(d; <---<d,) be a graphical degree sequence, with 3.
Ifdi <i< %n implies ¢_; > n—i, thenrris forcibly hamiltonian graphical.

Unlike its predecessors, Chtal's theorem has the property that if it does not guar-
antee that a graphical degree sequemceforcibly hamiltonian graphical, themis
majorized by some degree sequemtavhich has a nonhamiltonian realization. As
we'll see, this fact implies that Clal’s theorem is the strongest of an entire class of
theorems giving sufficient conditions farto be forcibly hamiltonian graphical.

A factor of a graphG is a spanning subgraph &. A k-factor of G is a factor
whose vertex degrees are identicddlyFor a recent survey on graph factors, see [14].
In the present paper, we develop sufficient conditions foegree sequence to be
forcibly k-factor graphical. We note that previous work relating @egrand the exis-
tence of factors has focused primarily on sufficient coodgifor T to be potentially
k-factor graphical. The following obvious necessary cdoditvas conjectured to be
sufficient by Rao and Rao [15], and this was later proved bydaya1].

Theorem 2 [11] The sequenca= (dj,dy,...,dn) is potentially k-factor graphical
if and only if

(1) (di,do,...,dn) is graphical, and

(2) (di—Kk,d2—Kk,...,dy—K) is graphical.
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Kleitman and Wang [9] later gave a proof of Theorem 2 thatdgdl a polynomial
algorithm constructing a realizatidb of 7T with ak-factor. Lovasz [13] subsequently
gave a very short proof of Theorem 2 for the special dasel, and Chen [5] pro-
duced a short proof for akl > 1.

In Section 2, we give a theorem farto be forcibly graphical with deficiency at
mostf (i.e., have a matching missing at mgstertices), and show this theorem is
strongest in the same sense as &hls hamiltonian degree theorem. The c@se 0
gives the strongest result far to be forcibly 1-factor graphical. In Section 3, we
give the strongest theorem, in the same sense a&té@hformto be forcibly 2-factor
graphical. But the increase in the number of nonredundamdlifons which must
be checked as we move from a 1-factor to a 2-factor is notalplé we conjecture
the number of such conditions in the best monotone theorenm fio be forcibly
k-factor graphical increases superpolynomialliiithus it would be desirable to find
a theorem fortto be forciblyk-factor graphical in which the number of nonredundant
conditions grows in a more reasonable way. In Section 4, we glich a theorem
for k > 2, based on Tutte’s well-known factor theorem. While our theois not
best monotone, it is nevertheless tight in a precise wayvangdrovide examples to
illustrate this tightness.

We conclude this introduction with some concepts which aeded in the se-
guel. LetP denote a graph property (e.g., hamiltonian, contaidsfactor, etc.)
such that whenever a spanning subgraptGofias P, so doesG. A function f :
{Graphical Degree Sequenges- {0,1} such thatf (71) = 1 impliesmis forcibly P
graphical, and (17) = 0 implies nothing in this regard, is calledacibly P function
Such a function is callechonotonef 7 > mand f(m) = 1 implies f(77') = 1, and
weakly optimalif f (1) = 0 implies there exists a graphical sequemte> 1T such
thatm' has a realizatio®’ withoutP. A forcibly P function which is both monotone
and weakly optimal is the best monotone forciBlyunction, in the following sense.

Theorem 3 If f,fo are monotone, forcibly P functions, angd i weakly optimal,
then §(m) > f(m), for every graphical sequenae

Proof Suppose to the contrary that for some graphical sequanse have 1=
f(rm) > fo(mm) = 0. Sincefy is weakly optimal, there exists a graphical sequence
M > mrsuch thatt' has a realizatio®’ without P, and thusf (') = 0. Butw' > m,
f(m) =1 andf(77) = 0imply f cannot be monotone, a contradiction. ]

A theoremT giving a sufficient condition fort to be forciblyP corresponds to the
forcibly P function fr given by: fr(71) = 1 if and only if T implies rris forcibly P. It
is well-known that ifT is Theorem 1 (Ch&tal’'s theorem), therfiy is both monotone
and weakly optimal, and thus the best monotone forcibly haman function in the
above sense. In the sequel, we will simplify the formallyreot ‘fr is monotone,
etc.’ to ‘T is monotone, etc..

2 Best monotone condition for a 1-factor

In this section we present best monotone conditions forgigi@have a large match-
ing. These results were first obtained by Las Vergnas [12],cam also be obtained
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from results in Bondy and Ckatal [3]. For the convenience of the reader, we include
the statement of the results and short proofs below.

Thedeficiencyof G, denoted défG), is the number of vertices unmatched under a
maximum matching is. In particularG contains a 1-factor if and only if dg&) = 0.

We first give a best monotone condition faito be forcibly graphical with defi-
ciency at mosp, for any3 > 0.

Theorem 4 [3,12] Let G have degree sequenme= (d; < --- < dp), and let0 <
B <nwithB =n (mod 2. If

dp1<i—-B<3(n—B-1) — dyp>n-i-1,
thendef(G) < .
The condition in Theorem 4 is clearly monotone. Furthermidra does not satisfy
the condition for somei > B, then 7 is majorized by M = (i — B)+t
(n—i—2)"2+F-Y(n—1)-P. But 17’ is realizable a¥;_p + (Kis1UKn_2i4p-1),
which has deficiencf + 2. Thus Theorem 4 is weakly optimal, and the condition of
the theorem is best monotone.

Proof of Theorem 4 Supposer satisfies the condition in Theorem 4, but @&f >
B+2. (The conditiorB =n (mod 2 guarantees that dgb) — (3 is always even.) De-
fine G' = Kg 4 + G, with degree sequenc&’ = (di+ B+ 1,...,dn+ B + 1,
((n—1)+ B +1)P*1). Note that the number of vertices 6f is odd.

Supposé’ has a Hamilton cycle. Then, by taking alternating edges andycle,
there is a matching covering all vertices@fexcept one vertex, and we can choose
that missed vertex freely. So choose a matching coveringutlbne of the + 1
new vertices. Removing the othBrnew vertices as well, the remaining edges form
a matching covering all but at moBtvertices fromG, a contradiction.

HenceG' cannot have a Hamilton cycle, amd cannot satisfy the condition in
Theorem 1. Thus there is somg 3 + 1 such that

d+B+1<i<3(n+B+1) and dypi1i+B+1<(N+B+1)—i—1
Subtracting3 + 1 throughout this equation gives
d<i-B-1<3n—-B-1) and dypqi<n—i—L1L
Replacing by j + 1 we get
di1<j—-B<3i(n-B-1) and dnpj<n—j—2
Thusrfails to satisfy the condition in Theorem 4, a contradiction [

As an important special case, we give the best monotonetimmébr a graph to have
a 1-factor.

Corollary 5 [3,12] Let G have degree sequenme= (d; < --- < dy,), with n> 2
and n even. If

g1 <i<in = dni>n—i—1, 1)
then G contains a 1-factor.

We note in passing that (1) is Caal's best monotone condition f@ to have a
hamiltonian path [6].
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3 Best monotone condition for a 2-factor

We now give a best monotone condition for the existence ofactr. In what fol-
lows we abuse the notation by settidg= 0.

Theorem 6 Let G have degree sequerme= (d; < --- < dy), withn> 3. If
() nodd = dini1)2 > 3(N+1);
(i) neven=> din_z)/2>3N0rdnip)2 > 3(N+2);

(i di<iandd;1 <i+1 = dyj1>n—i—lordyj>n—ifor0<i <
3(n—2);

(iv) d1<ianddi2<i+1 = dijz3>n—i—2ord—i>n—i—1,forl<
ig%(n—S),

then G contains a 2-factor.

The condition in Theorem 6 is easily seen to be monotonehEurtore, ifrr fails to
satisfy any of (i) through (iv), therris majorized by some&’ having a realizatio®’
without a 2-factor. In particular, note that

e if (i) fails, then 1 is majorized by’ = (1(n—1))™™"2(n— 1)"-1/2, having
realizationK_1) /2 + Kny1)/2;

e if (ii) fails, then 1 is majorized byr = (1(n—2))™?/%(1n)*(n— 1)(-2/2,
having realizatiorK,_2) 2 + (Kn-2),2 UK2);
e if (iii) fails for some i, then 1t is majorized by’ = i'(i 4+ 1)%(n —i —2)"~2-2
(n—i—1)Y(n— 1), having realizatiork; + (Ki;1 UKn_2i_1) together with an edge
joining Ki 1 andKn_2i1;
e if (iv) fails for somei, thenris majorized by’ = i'"~(i +1)3(n—i —3)
(n—i— 2)3(n - 1)i, having realizatiorK; + (Ki 2 UKn_2_2) together with three in-
dependent edges joining..» andKn_i_».

It is immediate that none of the above realizations contaififactor. Hence,
Theorem 6 is weakly optimal, and the condition of the theoi®best monotone.

n—-2i-5

Proof of Theorem 6 Supposer satisfies (i) through (iv), buk has no 2-factor. We
may assume the addition of any missing edg&toreates a 2-factor. Lek, ...,V
be the vertices o6, with respective degreel < --- < dn, and assumej, v are a
nonadjacent pair with+k as large as possible, adgd< dyx. Thenvj must be adjacent
tO Viy1, Vky2, - - -, Vn @and so

dj > n—k. (2)

Similarly, v, must be adjacent tgj 1, ..., Vk—1,Vk+1,---,Vn, @and soO
d«>n—j—1 3)

SinceG + (vj, V) has a 2-factors has a spanning subgraph consisting of a fath
joining vj andvy, andt > 0 cyclesCy, ... G, all vertex disjoint.

We may also assumg, v andP are chosen such that¥fw are any nonadja-
cent vertices withdg(v) = d; anddg(w) = d, and if P’ is any (v,w)-path such that
G —V(P) has a 2-factor, thetP’| < |P|. Otherwise, re-index the set of vertices of
degredd; (resp.,dg) so thatv (resp.,w) is given the highest index in the set.
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SinceG has no 2-factor, we cannot have independent edges betwgen} and
two consecutive vertices on any of tli, 0 < u <t. Similarly, we cannot have
dp(vj) +dp(vk) > [V(P)|, since otherwisgV (P)) is hamiltonian and> contains a
2-factor. This means

de,, (Vi) +d, (Vi) < [V(Cy)| forO<p <t,

(4)
and dp(Vj)+dp(vi) < [V(P)| — 1.

It follows immediately that
dji+d<n-1 (5)
We distinguish two cases fal + d.
Casel: dj+d¢<n-2.
Using (3), we obtain
dj<(n-2)—de<(n-2)—(n—j-1)=j-1

Takei,m so thati = dj = j —m, wherem > 1. By Case 1 we have< %(n— 2).
Since alsadj = dj_, < dj =i anddi; = dj_my1 < dj =i, condition (iii) implies
Oh—(j—m-1>Nn—(j—m)—=1ord, (j_m = n—(j—m). In either case,

Oy (jom =n—(j—m) -1 (6)
Addingd; = j —mto (6), we obtain
deFdnfjerZ n—1. (7)

Butd;j +dq < n—2 and (7) together give— j +m> k, hencej +k < n+m. On the
other hand, (2) giveg—m=d; > n—Kk, hencej +k > n+m, a contradiction. O

CAseE2: dj+d¢=n—-1.

In this case we have equality in (5), hence all the inegealiti (4) become equalities.

In particular, this implies that every cydly,, 1 < u <t, satisfies one of the following

conditions:

(a) Every vertexirC, is adjacent tov (resp.,vi), and none are adjacentup(resp.,
vj), or

(b) [V(Cy)|is even, andj, v are both adjacent to the same alternate vertices,on

We call a cycle of type (a) acycle(resp.k-cyclg, and a cycle of type (b) &, k)-
cycle SetA = Uj-cyclesCV(C)! B= Uk-cyclesCV(C)' andD = U(Lk)-cyclescv(c)’ and
leta=|A|, b= |B|, andc= |D|.

Vertices inV (G) — {vj, vk} which are adjacent to both (resp., neithery g will
be calledlarge (resp.,smal) vertices. In particular, the vertices of eaghk)-cycle
are alternately large and small, and hence there smeall andc large vertices among
the(j,k)-cycles.

By the definitions ok, b, ¢, noting that a cycle has at least 3 vertices, we have the
following.
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Observation1 We havea=0ora>3,b=0orb>3,andc=0o0rc> 2.
By the choice ok, v andP, we also have the following observations.

Observation 2

(@ If (u,w) ¢ E(G), then &(u) < dj; if (u,v)) ¢ E(G), then &(u) < d.
(b) Avertex in A has degree at most-dl.

(c) Avertexin B has degree at mogt-€1.

(d) A small vertex in D has degree at mogt-dl.

Proof Part (a) follows directly from the choice uf, v as nonadjacent wittks (vj) +
da(Vk) = dj + dx maximal.

For (b), consider ang € A, with saya = v;,. Since(vy, vk) ¢ E(G), we havel < j
by the maximality ofj +k, and sadg(a) < d;. If dg(a) = dj, then since each vertex
in A'is adjacent tos;, we can combine the path and thej-cycle C;; containinga
(leaving the other cycleS, alone) into a patl®’ joining a andvi such thaG—V (P')
has a 2-factor an¢P’| > |P|, contradicting the choice d®. Thusdg(a) < dj —
proving (b).

Parts (c) and (d) follow by a similar arguments. O

Let p= [V(P)|, and let us re-inde® asvj = wy,Wo, ..., W, = V. By the case as-
sumption,dp(wy) +dp(Wp) = p—1.
Assume first thap = 3. Thend; = a+c+1 anddy = b+c+1, so thath > a.
Moreover,n = a+ b+ 2c+ 3 and there are+ 1 large vertices and small vertices.
If b > 3, the large vertexv, is not adjacent to a vertex i or to a small vertex
in D, or elseG contains a 2-factor. Thus, has degree at most—1— (a+c), and
by Observations 2 (b,c,djtis majorized by

m = (a+¢)*(a+c+1)}(b+c)®(b+c+1)}(n—1—(a+c))}(n—1)°.
Settingi = a+c, so that 0< i = a+c= (n—3) — (b+c) < 1(n—3), m becomes
m=i(i+1)'n-i-3Pn-i—2n-i-1)*(n-1)°

Sincerm majorizesr, we haved; <i, di 1 <i+1,dy 1= dn,(a+c+1> <n-—i-—
2, anddn-i = dy_(ac) < N—i—1, andr violates condition (jii). Hencés = 0 by
Observation 1, and a fortioa = 0.

But if a=b =0, thenc = %(n— 3), nis odd, and by Observation 2 (dj is
majorized by

= (3(n-3)" n—1))%(n—1)"-V/2,

V(4
Sincere majorizesrt, we haved(n1)/2 <
Hence we assumg> 4.
We make several further observations regarding the pesatjacencies ofj, v
into the pathP.

1
a(
%(n— 1), andrrviolates condition (i).

Observation 3 Forallm,1<m< p—1, we havgw;,wny1) € E(G) if and only if
(Wp, Wm) ¢ E(G).
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Proof If (w1,Wm1) € E(G), then (wp,Wm) ¢ E(G), since otherwisgV (P)) is
hamiltonian andG has a 2-factor. The converse follows sirggw:) + dp(Wp) =
p—1. a

Observation 4 If (w1, Wn), (W1, Wm+1) € E(G) for some m3 < m< p—3, then we
have(w;, Wn2) € E(G).

Proof If (wi,Wmy2) ¢ E(G), then(wp,wmi1) € E(G) by Observation 3. But since
(Wi, wm) € E(G), this means thatV (P)) would have a 2-factor consisting of the
cycles(wy,Wa, ..., Wmn,W1) and (Wp, Wm1,Wm4-2, ..., Wp), and thusG would have a
2-factor, a contradiction. O

Observation 4 implies that if; is adjacent to consecutive vertiosg, W1 € V (P)
for somem> 3, thenw; is adjacent to all of the vertic&®n, Wm 1, ..., Wp_1.

Observation 5 If (wq,Wm), (Wi, Wm—1) ¢ E(G) for some5 < m< p—1, then we
have(wi,Wm_2) ¢ E(G).

Proof If (wi,wm) ¢ E(G), then(wp,wm-1) € E(G) by Observation 3. So if also
(Wi, wim—2) € E(G), then(V(P)) would have a 2-factor as in the proof of Observa-
tion 4, leading to the same contradiction. O

Observation 5 implies that if;, is not adjacent to two consecutive vertiogg 1, Wm
onP for somem < p— 1, thenw; is not adjacent to any afs, ..., Wn_1,Wn.

By Observation 3, the adjacencieswf into P completely determine the adja-
cencies ofw, into P. But combining Observations 4 and 5, we see that the adjacen-
cies ofw; andwp into P must appear as shown in Figure 1, for sofne> 0. In
summaryw; will be adjacent tar > 0 consecutive verticesp_r,...,Wp_1 (Where
Wa,...,Wg is taken to be empty ifr > f3), wp will be adjacent t& > O consecutive
verticesws, ..., W41, andwy, W, are each adjacent to the vertiosg, 3, Ws, ...,
Wp_r—4,Wp_r—2. Note that/ = p— 2 impliesr = 0, andr = p— 2 implies/ = 0.

Fig. 1 The adjacencies afi;,w, onP.

Counting neighbors ofi; andw,, we get their degrees as follows.
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Observation 6
a+c+1, if¢=p—2,r=0,
dj =dg(wi) = ¢ a+c+p-2, ifr=p-2¢=0,
a+c+r+3(p—r—¢—1); otherwise

b+c+p-—2, if¢=p—2,r=0,
dy = dg(wp) =< b+c+1, ifr=p—2,(=0,
b+c+{+3(p—r—¢—1); otherwise

We next prove some observations to limit the possibilites,b) and(¢,r).

Observation 7 If (wq,wp_1) € E(G) (resp.,(w2,wp) € E(G)), then we have k-0
(resp., a= 0).

Proof If b# 0, there exists &-cycleC = (x1,Xo,...,%s,X1). Butif also(wy,wy_1) €
E(G), then (wy,Wo,...,Wp_1,W;) and (Wp,Xi,...,Xs,Wp) would be a 2-factor in
(V(C)uV(P)), implying a 2-factor inG. The proof that(w,,wp) € E(G) implies
a= 0 is symmetric. O

From Observation 6, we have

p—3 if{=p—2,r=0,
0<dk—dj=b—-a+{ 3—p,ifr=p-2,(=0, (8)
£—r, otherwise

From this, we obtain
Observation 8 ¢ >r.

Proof Suppose first #p—2.If r > ¢ >0, thenb > a> 0 sinceb+/¢>a+r
by (8). Butr > 0 implies (w1,wp_1) € E(G), and thusb = 0 by Observation 7, a
contradiction.

Suppose then=p—2> 2. Thenb > a> 0, sinceb > a+ p— 3 by (8). Since
r > 0, we have the same contradiction as in the previous parfagrap O

Observation 9 Ifr > 1, then/ < 1.

Proof Else we havéwi,wp_1), (Wp,W2), (Wp,W3) € E(G), and(wy, W2, Wp, W3, ...,
Wp_1,w1) would be a hamiltonian cycle itV (P)). ThusG would have a 2-factor, a
contradiction. O

Observations 8 and 9 together limit the possibilities(for) to (1,1) and(¢,0) with
0< ¢ < p—2. We also cannot hawe,r) = (p—3,0), sincew, is always adjacent
to wp_1, and so we would havé= p— 2 in that case. And we cannot haier) =
(p—4,0), since therp—r — ¢ — 1 is odd, violating Observation 6. To complete the
proof of Theorem 6, we will deal with the remaining possii®k in a number of
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cases, and show that all of them lead to a contradiction obon®re of conditions (i)
through (iv).

Before doing so, let us define the spanning subgtdpbf G by letting E(H)
consist of the edges in the cycl€g, 0 < u <t, or in the pathP, together with the
edges incident tav; or wp. Note that the edges incident @ or w, completely
determine the large or small vertices @ In the proofs of the cases below, any
adjacency beyond those indicated would create an edgech thatH + e, and a
fortiori G, contains a 2-factor.

Case2.1: (¢,r)=(1,1).

Since (Wy,Wp_1), (W2, Wp) € E(G), we havea = b = 0, by Observation 7. Using
Observation 6 this means that= dy = %(n —1), and hence is odd. Additionally,
there arec+ 3(p— 3) = 3(n— 3) small vertices. Each of these small vertices has
degree at most; by Observation 2 (a), and sois majorized by

B = (%(n_ 1))(n+l)/2(n_ 1)(nfl)/2.
But 15 (a fortiori 1) violates condition (i). O

CAase2.2: (¢,r) =(0,0).
By Observation 6dj = a+c+ 3(p—1) andd = b+c+ 3(p— 1), so thatb > a.
Also, there are+ % (p— 3) large and: + 3(p - 5) small vertices.
e By Observation 2 (b,c), each vertex An(resp.,B) has degree at moslj — 1 =
a+c+3(p—3) (resp.dk—1=b+c+1(p—3)).
e Each small vertex is adjacent to at most the large vertichefwiseG contains
a 2-factor), and so each small vertex has degree atepstp— 3).
e The vertexw, (resp.wp_1) is adjacent to at most the large verticeswang@esp.,
Wp) (otherwiseG contains a 2-factor), and ss,wp_; each have degree at most
c+3(p—1).

Thusrtis majorized by

= (c+1(p—3)""%(c+ L(p-1))*(a+c+ 3(p-23)*
(a+c+L(p—1) (b+c+i(p—3)°(b+c+i(p—1)) (n—1)HP-3/2

Settingi =a+c+ 3(p—1), sothat 2< i = 3(n— (b—a) - 1) < 3(n—1), the
sequencey becomes

m=(-a-1"*%i-ai-1%(n-i—2" " n-i-1tn-1)*"

f2<i< %(n— 2), then, sincay majorizesr, we haved; <i,di 1 <i,dh_j_1 <

n—i—2,andd,_; < n-—i—2, andmrviolates condition (iii).
Ifi= %(n— 1), thennis odd, andmt reduces to
= (3(-3)-a)" P (3(n-1)-a)*(3(n-3)*
((n— 1))2(n— 1)(n-3)/2-2a
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Sincer, majorizesrt, we havedin,1)/2 < %(n— 1), andm violates condition (i). O

CAase2.3: (¢4,r) =(1,0)

By Observation 7a = 0, and thus by Observation €; = c+ %(p— 2) anddy =
b+c+ 1p. Also, there aree+ 1(p— 2) large andc+ 1(p— 4) small vertices. If
p = 4 then/ = 2, a contradiction, and henge> 6.

e By Observation 2 (c), each vertex B has degree at most — 1 =b+c+
1

2(p—2).

e Each small vertex is adjacent to at most the large verticed,s@ each small
vertex has degree at mast- 1 (p— 2).

e The vertexwp_ 1 is adjacent to at most, and the large vertices, andsg_; has
degree at most+ 2p

Thusrris majorized by

6= (c+3(p-2) " P (et 3p) (bt 3(p-2)°
(b+c+1p)T(n—1)cHP-2/2,

Settingi = ¢+ 3(p—2), so that 2< i = 3(n—b—2) < 3(n—2), 76 becomes
m=i(i+1)'n—i-2)"22(n—i—1)*(n-1)"

If 2 <i g %( 3), then, sincers majorizesr, we haved; < i, diyq <i+1,
—2,andd,_; <n-—i—1, andrmviolates condition (iii).
Ifi= l( 2), thennis even, ands reduces to

= (300" (30—

Since 1¢, majorizest, we haved,;_1 < %n —1anddy21 < %n, and 11 violates
condition (ii). 0

CAsSE2.4: (¢,r) = (¢,0),where2< ¢ <p-5

We havea 0 by Observation 7, anp ¢ >5 by Case 2.4. By Observatlon@j =
+3(p—¢—1) andd = b+c+£¢+ 3 (p—£—1). Moreover, there are+ 3 (p— ¢ — 1)

Iarge vertices including/,, andc+ 1 5(p—£—3) small vertices.

.1 By Observation 2 (c), each vertex Bihas degree at mosk —1=b+c+/(+

3(p—£-3).

.2 Each small vertex other tham, , is adjacent to at most the large vertices ex-

ceptws, and so each small vertex other than , has degree at most+ %(p— £-3).

e The vertexw,, is not adjacent tavp, and so by Observation 2 (a)y> has

degree at most; = c+ 3(p—¢—1).

e The vertexwp_1 is adjacent to at mosty and the large vertices except, and

sowp_1 has degree at mostt- % (p— ¢ — 1).

e Eachwm, 3<m< /Y, is adjacent to at mosty, the large vertices, the vertices

iln B, and{ws,...,wy 1} — {wm}. Hence each sualy, has degree at mobt+ c+ £+

3(p—£=3).
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e The vertexw, is adjacent to at most, wp, the other large vertices, the vertices
in B, and{ws, ..., W.;1}. Hencew; has degree at mobt+c+ ¢+ 3(p—£¢—1).

e The vertexw,, 1 is not adjacent tov;, and so, by Observation 2 (a), vertey,
has degree at mogg = b+c+ £+ 3(p—£—1).

Thusrris majorized by

%= (c+ %(p—K—S))H(p*é*S)/z(ch Ip—t-1)°
(b+c+0+3(p—0-3)"" P (b+c+i+1(p—t—1)°(n—1)cH P32

Settingi =c— 1+ 3(p—¢—1),sothat I<i=3(n—b—¢—3) < 3(n—5), 1
becomes

=i+ +b+ 0> 2(i+b+e+1)3n-1).

Sincerg majorizesr, we haved; ; <i,di2 <i+1,dy i 3<i+b+/¢{=n—i-3,
andd,_; <i+b+/¢+1=n—i-2, and thugtviolates condition (iv). O

CASE2.5: (4,r)=(p—2,0)

We havea = 0, by Observation 7. By Observation 6, we then hdye- c+1 and
dk =b+c+p—2. If dp <1, then condition (iii) withi = 0 impliesdy_1 > n—1,
which means there are at least 2 vertices adjacent to all e¢hiices, a contradiction.
Hencec+1=d; > d; > 2, and scc > 2 by Observation 1. Finally, there acet- 1
large vertices includingv,, andc small vertices.

e By Observation 2 (a), the verticesBhave degree at modg =b+c+ p— 2.

e By Observation 2 (d), the small verticesiinhave degree at mod{ —1 =c.

e The vertexw, is not adjacent to the small verticeslin and sown, has degree at
mostn—1—-c=b+c+p—1.

e The verticesws,...,w,_1 have degree at mosf = b+ c+ p— 2 by Observa-
tion 2 (a), since none of them are adjacenvio= v;.

Thusrtis majorized by
m=c(c+ 1) b+c+p—2)°P2(b+c+p—1)(n—1)°.
Settingi = ¢, so that 2< c=i = 3(n—b— p) < 1(n—4), 7 becomes
=i+ (n—i—2"*2(n—i—1)*(n—1)"

Sincery majorizesm, we haved, <i, di;1 <i+1,dyi-1 <nh—i—2, anddy_j <
n—i—1, andrmrviolates condition (iii). O

The proof of Theorem 6 is complete. [



Degree Sequences and the ExistendeB&ctors 13

4 Sufficient condition for the existence of &-factor, k > 2

The increase in complexity of Theorem I6-€ 2) compared to Corollary (= 1)
suggests that the best monotone conditiorftw be forciblyk-factor graphical may
become unwieldy akincreases. Indeed, we make the following conjecture.

Conjecture 7 The best monotone condition for a degree sequence of lertgthen

forcibly k-factor graphical requires checking at leastkf nonredundant conditions
(where each condition may require(iQ) checks), where (k) grows superpolynomi-
ally in k.

Kriesell [10] has verified such rapidly increasing compigxor the best monotone

condition for 1T to be forciblyk-edge-connected. Indeed, Kriesell has shown such a

condition entails checking at legstk) nonredundant conditions, whepék) denotes
my/2k/3

the number of partitions d€. It is well-known [8] thatp(k) ~

The above conjecture suggests the desirability of obtgiaimonotone condition
for rrto be forciblyk-factor graphical which does not require checking a suggfpo
nomial number of conditions. Our goal in this section is toyersuch a condition for
k > 2. Since our condition will require Tutte’'s Factor Theore2nl[6], we begin with
some needed background.

Belck [2] and Tutte [16] characterized grapBshat do not contain k-factor. For
disjoint subset#\, B of V(G), letC =V (G) — A— B. We call a componerti of (C)
oddif k|H|+ e(H,B) is odd. The number of odd components(6) is denoted by
odd(A,B). Define

O(AB) = KA+ 3 do(u) ~KB| ~0dd(AB).

ue

Theorem 8 Let G be a graph on n vertices anc>k1.

(@) [16] For any disjoint AB CV(G), 6k(A,B) =kn (mod 2;

(b) [2,16]G does not contain a k-factor if and only@ (A, B) < 0, for some disjoint
ABCV(G).

We call any disjoint paiA, B C V(G) for which 6 (A,B) < 0 ak-Tutte-pairfor G.
Note that ifknis even, ther, B is ak-Tutte-pair forG if and only if

KIA| + zBdG—A(U) < k|B| 4 0dd(A,B) — 2.
ue

Moreover, for allu € Bwe havedg(u) < dg_a(U)+|A},s0 5 dg(u) < 5 dg_a(u)+
ueB ueB
|A||B|. Thus for eactk-Tutte-pairA, B we have
> da(u) < KIB|+ |A|[B| ~KIA|+ odd (A B) —2. ©)
ue
Our main result in this section is the following conditiorr b graphical degree

sequencert to be forcibly k-factor graphical. The condition will guarantee that no
k-Tutte-pair can exist, and is readily seen to be monotoneadfsn setly = 0.
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Theorem 9 Letrr=(d; <--- <d,) be a graphical degree sequence, and let R
be an integer such that kn is even. Suppose

() di>Kk;

(i) foralla,b,gwith0<a< 3n,0<b<n-aandmax{0,a(k—b)+2} <q<

b
n—a—bsothaty d <kb+ab—ka+q-2, the following holds: Setting +

i=1
a+k+g—2and s=n—max{0,b—k+1} —max{0,g— 1} — 1, we have
(*) r<sandg <r,orr>sand@_s p<Ss = dna>maxrst+1
Thenrtis forcibly k-factor graphical.

Proof Letnandk > 2 be integers wittkn even. Suppose satisfies (i) and (ii) in
the theorem, but has a realizati@with no k-factor. This means thas has at least
onek-Tutte-pair.

Following [7], we call &k-Tutte-pairA, B minimalif eitherB= &, or G (A,B') >0
for all proper subset®’ C B. We then have

Lemmal [7] Letk> 2, and let AB be a minimal k-Tutte-pair for a graph G with
no k-factor. If B# @, thenA((B)) <k-—2.

Next let A, B be ak-Tutte-pair forG with A as large as possible, adB minimal.
Also, setC =V (G) — A— B. We establish some further observations.

Lemma 2

@ |A < in.

(b) ForallveC, gv,B) <min{k—1,|B|}.

(c) ForallueB, dz(u) < |Al+k+odd(A,B)—2.

Proof SupposeA| > %n, so that/A| > |B| +|C|. Then we have
O(AB) =KAI+ 3 do-(u) ~KIB| ~odd(A.B) > k(A - [B|) ~ odc(A.B)
ue

> KIC| — odd(A,B) > [C| — odd(A,B) > 0,

which contradicts thad, B is ak-Tutte-pair.
For (b), clearlye(v,B) < |B|. If e(v,B) > k for somev € C, movev to A, and
consider the change in each term@g A, B):

A+ 3 doalt) —KB|- odd(AB).

~~
increases bx  decreases bg(v,B) > k decreases by 1
So by Theorem 8 (apU {v}, B is also &-Tutte-pair inG, contradicting the assump-
tion thatA, B is ak-Tutte-pair withA as large as possible.
And for (c), suppose thalg(t) > |A| +k+ odd(A,B) — 1 for somet € B. This
implies thatds_a(t) > k+odd(A,B) — 1. Now movet to C, and consider the change
in each term irBy (A, B):

KA+ 3dsa) — KB -  odd(AB)
ue
————
decreases by decreases by  decreases by odd(A,B)

dg_a(t) >k+odd(AB)—1
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So by Theorem 8 (a)p,B— {t} is also ak-Tutte-pair forG, contradicting the mini-
mality of A, B. O

We introduce some further notation. $et |A|, b=|B|,c=|C|=n—a—b,q=
odd(AB), r =a+k+qg—2, ands=n—max{0,b—k+1} — max{0,q— 1} — 1.
Using this notation, (9) can be written as

EBdg(u) < kb+ab—-ka+q-—2. (10)
ue

By Lemma 2 (a) we have € a < %n. SinceB is disjoint fromA, we trivially have

0 < b < n-a. And since the number of odd component<dé at most the number

of elements ofC, we are also guaranteed ttgak n—a— b. Finally, since for all

verticesv we havedg(v) > di > k, we get from (10) that| > 5 dg(u) —kb—ab+
ueB

ka+2 > kb—kb—ab+ka+ 2 = a(k—b) + 2, henceq > max{0,a(k — b) + 2}. It
follows thata, b, g satisfy the conditions in Theorem 9 (ii).
Next, by Lemma 2 (c) we have that

forallue B: dg(u) <r. (11)

If C#£ o (i.e., ifa+b < n), letmbe the size of a largest component@§. Then,
using Lemma 2 (b), for all € C we have

dg(v) =e(v,A) +e(v,B) +e(v,C) < |A|+min{k—1,|B|} +m—1
=a+b—maxq{0,b—k+1}+m—1.

Clearlym<|C|=n—a—h.If g>1,thenm<n—a—b—(q—1), sinceC has at
leastqg components. Thus < n—a—b—max{0,q— 1}. Combining this all gives

forallve C: dg(v) <n—max{0,b—k+1} —max{0,q—1} —1=s. (12)

Next notice that we cannot have— a = 0, because otherwi®® = C = @ and
odd(A,B) =0, and (9) becomes € —ka— 2, a contradiction. From (11) and (12)
we see that each of thre— a > 0 vertices inBUC has degree at most mgxs}, and
s0dp_a < max{r,s}.

If r <, then each of the vertices inB has degree at mostand sady, < r. This
also holds ifb = 0, since we sedy = 0, andr = a+k+q—2> 0 becaus& > 2.

If r > s, then each oh —a— b vertices inC has degree at mosty (12), and so
dnh—a—b < s. This also holds ih—a—b =0, since we sedp = 0 and

s=n—max{0,b—k+1} —max{0,q—1} -1
=z min{n—1,n—q,(n—-b)+(k—2),(n—q-b)+(k-1)} > 0,
sincek > 2 andg<n—a-—bh.

So we always have < sandd, <r, orr > sandd,_a_p < s, but alsod,_5 <
max{r,s}, contradicting assumption (if}) in Theorem 9. ]
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How good is Theorem 9? We know it is not best monotonéfer2. For example, the
sequencet = 4%6310* satisfies Theorem 6, but not Theorem 9 (it violateswhen
a=4,b=5andg= 2, withr = 6 ands=5). And it is very unlikely the theorem is
best monotone for anly > 3. Nevertheless, Theorem 9 appears to be quite tight. In
particular, we conjecture for ea& 2 there exists ar = (d; < --- <d,) such that
e (1K) satisfies Theorem 9, and
n n

e there exists a degree sequertewith ' < mand y d = (Z di) — 2, such

i=1 i=1

that 77 is not forciblyk-factor graphical.

Informally, for eachk > 2, there exists a painr, ') with 17 ‘just below’ 1T such
that Theorem 9 detects thatis forcibly k-factor graphical, while7 is not forcibly
k-factor graphical.

For example, len=2 (mod 4 andn > 6, and consider the sequences

= (%n)"/”l(n—l)”/z’l and 17 = (%n_l)Z(%n)n/Z—l(n_ 1),1/271.

It is easy to verify that the unique realization mf fails to have a-factor, fork =
%(n+2) > 2. Onthe other hand, we have programmed Theorem 9, and dehfi&t,

satisfies Theorem 9 with= %(n+2) for all values oin up ton = 2502. We conjecture
that (1, 3(n+2)) satisfies Theorem 9 for ail > 6 withn=2 (mod 4.

There is another sense in which Theorem 9 seems quite goodagh & is
t-toughif t- w(G) < |X|, for everyX C V(G) with w(G — X) > 1, wherew(G — X)
denotes the number of components®f X. In [1], the authors give the following
best monotone condition far to be forciblyt-tough, fort > 1.

Theorem 10 [1] Lett> 1, and letr= (di < --- < dy) be graphical with n>
t+21)[t]/t.If

djip <i = dni>n—[i/t], fort <i<tn/(t+1),
thenrtis forcibly t-tough graphical.
We also have the following classical result.

Theorem 11 [7] Letk> 1, and let G be a graph on i k+ 1 vertices with kn even.
If G is k-tough, then G has a k-factor.

Based on checking many examples with our program, we camgthat there is a
relation between Theorems 10 and 9, which somewhat mirdoesEm 11.

Conjecture 12 Letrr= (di < --- < dp) be graphical, and let k= 2 be an integer
with n> k+ 1 and kn even. Iftis forcibly k-tough graphical by Theorem 10, than
is forcibly k-factor graphical by Theorem 9.
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