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Degree Sequences and the Existence ofk-Factors

D. Bauer · H.J. Broersma · J. van den Heuvel ·
N. Kahl · E. Schmeichel

Abstract We consider sufficient conditions for a degree sequenceπ to be forcibly
k-factor graphical. We note that previous work on degrees andfactors has focused
primarily on finding conditions for a degree sequence to be potentiallyk-factor graph-
ical.

We first give a theorem forπ to be forcibly 1-factor graphical and, more gener-
ally, forcibly graphical with deficiency at mostβ ≥ 0. These theorems are equal in
strength to Chv́atal’s well-known hamiltonian theorem, i.e., the best monotone de-
gree condition for hamiltonicity. We then give an equally strong theorem forπ to
be forcibly 2-factor graphical. Unfortunately, the numberof nonredundant conditions
that must be checked increases significantly in moving fromk = 1 to k = 2, and we
conjecture that the number of nonredundant conditions in a best monotone theorem
for ak-factor will increase superpolynomially ink.

This suggests the desirability of finding a theorem forπ to be forciblyk-factor
graphical whose algorithmic complexity grows more slowly.In the final section, we
present such a theorem for anyk ≥ 2, based on Tutte’s well-known factor theorem.
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While this theorem is not best monotone, we show that it is nevertheless tight in a
precise way, and give examples illustrating this tightness.

Keywords k-factor· degree sequence· best monotone condition

Mathematics Subject Classification (2000)05C70· 05C07

1 Introduction

We consider only undirected graphs without loops or multiple edges. Our terminol-
ogy and notation will be standard except as indicated, and a good reference for any
undefined terms or notation is [4].

A degree sequenceof a graph onn vertices is any sequenceπ = (d1,d2, . . . ,dn)
consisting of the vertex degrees of the graph. In contrast to[4], we will usually as-
sume the sequence is in nondecreasing order. We generally use the standard abbre-
viated notation for degree sequences, e.g.,(4,4,4,4,4,5,5) will be denoted 4552. A
sequence of integersπ = (d1,d2, . . . ,dn) is calledgraphical if there exists a graphG
havingπ as one of its degree sequences, in which case we callG a realizationof π.
If π = (d1, . . . ,dn) andπ ′ = (d′

1, . . . ,d
′
n) are two integer sequences, we sayπ ′ ma-

jorizesπ, denotedπ ′ ≥ π, if d′
j ≥ d j for 1≤ j ≤ n. If P is a graphical property (e.g.,

k-connected, hamiltonian), we call a graphical degree sequenceforcibly (respectively,
potentially) P graphicalif every (respectively, some) realization ofπ has propertyP.

Historically, the degree sequence of a graph has been used toprovide sufficient
conditions for a graph to have a certain property, such ask-connected or hamiltonian.
Sufficient conditions for a degree sequence to be forcibly hamiltonian were given by
several authors, culminating in the following theorem of Chvátal [6] in 1972.

Theorem 1 [6] Letπ = (d1 ≤ ·· · ≤ dn) be a graphical degree sequence, with n≥ 3.
If di ≤ i < 1

2n implies dn−i ≥ n− i, thenπ is forcibly hamiltonian graphical.

Unlike its predecessors, Chvátal’s theorem has the property that if it does not guar-
antee that a graphical degree sequenceπ is forcibly hamiltonian graphical, thenπ is
majorized by some degree sequenceπ ′ which has a nonhamiltonian realization. As
we’ll see, this fact implies that Chvátal’s theorem is the strongest of an entire class of
theorems giving sufficient conditions forπ to be forcibly hamiltonian graphical.

A factor of a graphG is a spanning subgraph ofG. A k-factor of G is a factor
whose vertex degrees are identicallyk. For a recent survey on graph factors, see [14].
In the present paper, we develop sufficient conditions for a degree sequence to be
forcibly k-factor graphical. We note that previous work relating degrees and the exis-
tence of factors has focused primarily on sufficient conditions forπ to be potentially
k-factor graphical. The following obvious necessary condition was conjectured to be
sufficient by Rao and Rao [15], and this was later proved by Kundu [11].

Theorem 2 [11] The sequenceπ = (d1,d2, . . . ,dn) is potentially k-factor graphical
if and only if
(1) (d1,d2, . . . ,dn) is graphical, and
(2) (d1−k,d2−k, . . . ,dn−k) is graphical.
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Kleitman and Wang [9] later gave a proof of Theorem 2 that yielded a polynomial
algorithm constructing a realizationG of π with ak-factor. Lov́asz [13] subsequently
gave a very short proof of Theorem 2 for the special casek = 1, and Chen [5] pro-
duced a short proof for allk≥ 1.

In Section 2, we give a theorem forπ to be forcibly graphical with deficiency at
mostβ (i.e., have a matching missing at mostβ vertices), and show this theorem is
strongest in the same sense as Chvátal’s hamiltonian degree theorem. The caseβ = 0
gives the strongest result forπ to be forcibly 1-factor graphical. In Section 3, we
give the strongest theorem, in the same sense as Chvátal, forπ to be forcibly 2-factor
graphical. But the increase in the number of nonredundant conditions which must
be checked as we move from a 1-factor to a 2-factor is notable,and we conjecture
the number of such conditions in the best monotone theorem for π to be forcibly
k-factor graphical increases superpolynomially ink. Thus it would be desirable to find
a theorem forπ to be forciblyk-factor graphical in which the number of nonredundant
conditions grows in a more reasonable way. In Section 4, we give such a theorem
for k ≥ 2, based on Tutte’s well-known factor theorem. While our theorem is not
best monotone, it is nevertheless tight in a precise way, andwe provide examples to
illustrate this tightness.

We conclude this introduction with some concepts which are needed in the se-
quel. Let P denote a graph property (e.g., hamiltonian, contains ak-factor, etc.)
such that whenever a spanning subgraph ofG hasP, so doesG. A function f :
{Graphical Degree Sequences} → {0,1} such thatf (π) = 1 impliesπ is forcibly P
graphical, andf (π) = 0 implies nothing in this regard, is called aforcibly P function.
Such a function is calledmonotoneif π ′ ≥ π and f (π) = 1 implies f (π ′) = 1, and
weakly optimalif f (π) = 0 implies there exists a graphical sequenceπ ′ ≥ π such
thatπ ′ has a realizationG′ without P. A forcibly P function which is both monotone
and weakly optimal is the best monotone forciblyP function, in the following sense.

Theorem 3 If f , f0 are monotone, forcibly P functions, and f0 is weakly optimal,
then f0(π)≥ f (π), for every graphical sequenceπ.

Proof Suppose to the contrary that for some graphical sequenceπ we have 1=
f (π) > f0(π) = 0. Since f0 is weakly optimal, there exists a graphical sequence
π ′ ≥ π such thatπ ′ has a realizationG′ without P, and thusf (π ′) = 0. But π ′ ≥ π,
f (π) = 1 and f (π ′) = 0 imply f cannot be monotone, a contradiction. �

A theoremT giving a sufficient condition forπ to be forciblyP corresponds to the
forcibly P function fT given by: fT(π) = 1 if and only ifT impliesπ is forcibly P. It
is well-known that ifT is Theorem 1 (Chv́atal’s theorem), thenfT is both monotone
and weakly optimal, and thus the best monotone forcibly hamiltonian function in the
above sense. In the sequel, we will simplify the formally correct ‘ fT is monotone,
etc.’ to ‘T is monotone, etc..’

2 Best monotone condition for a 1-factor

In this section we present best monotone conditions for a graph to have a large match-
ing. These results were first obtained by Las Vergnas [12], and can also be obtained
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from results in Bondy and Chvátal [3]. For the convenience of the reader, we include
the statement of the results and short proofs below.

Thedeficiencyof G, denoted def(G), is the number of vertices unmatched under a
maximum matching inG. In particular,Gcontains a 1-factor if and only if def(G)= 0.

We first give a best monotone condition forπ to be forcibly graphical with defi-
ciency at mostβ , for anyβ ≥ 0.

Theorem 4 [3,12] Let G have degree sequenceπ = (d1 ≤ ·· · ≤ dn), and let0 ≤
β ≤ n with β ≡ n (mod 2). If

di+1 ≤ i −β < 1
2(n−β −1) =⇒ dn+β−i ≥ n− i −1,

thendef(G)≤ β .

The condition in Theorem 4 is clearly monotone. Furthermore, if π does not satisfy
the condition for somei ≥ β , then π is majorized by π ′ = (i − β )i+1

(n− i − 2)n−2i+β−1(n− 1)i−β . But π ′ is realizable asKi−β + (Ki+1 ∪Kn−2i+β−1),
which has deficiencyβ +2. Thus Theorem 4 is weakly optimal, and the condition of
the theorem is best monotone.

Proof of Theorem 4 Supposeπ satisfies the condition in Theorem 4, but def(G) ≥
β +2. (The conditionβ ≡ n (mod 2) guarantees that def(G)−β is always even.) De-
fine G′ .

= Kβ+1 + G, with degree sequenceπ ′ = (d1 + β + 1, . . . ,dn + β + 1,
((n−1)+β +1)β+1). Note that the number of vertices ofG′ is odd.

SupposeG′ has a Hamilton cycle. Then, by taking alternating edges on that cycle,
there is a matching covering all vertices ofG′ except one vertex, and we can choose
that missed vertex freely. So choose a matching covering allbut one of theβ + 1
new vertices. Removing the otherβ new vertices as well, the remaining edges form
a matching covering all but at mostβ vertices fromG, a contradiction.

HenceG′ cannot have a Hamilton cycle, andπ ′ cannot satisfy the condition in
Theorem 1. Thus there is somei ≥ β +1 such that

di +β +1≤ i < 1
2(n+β +1) and dn+β+1−i +β +1≤ (n+β +1)− i −1.

Subtractingβ +1 throughout this equation gives

di ≤ i −β −1< 1
2(n−β −1) and dn+β+1−i ≤ n− i −1.

Replacingi by j +1 we get

d j+1 ≤ j −β < 1
2(n−β −1) and dn+β− j ≤ n− j −2.

Thusπ fails to satisfy the condition in Theorem 4, a contradiction. �

As an important special case, we give the best monotone condition for a graph to have
a 1-factor.

Corollary 5 [3,12] Let G have degree sequenceπ = (d1 ≤ ·· · ≤ dn), with n≥ 2
and n even. If

di+1 ≤ i < 1
2n =⇒ dn−i ≥ n− i −1, (1)

then G contains a 1-factor.

We note in passing that (1) is Chvátal’s best monotone condition forG to have a
hamiltonian path [6].



Degree Sequences and the Existence ofk-Factors 5

3 Best monotone condition for a 2-factor

We now give a best monotone condition for the existence of a 2-factor. In what fol-
lows we abuse the notation by settingd0 = 0.

Theorem 6 Let G have degree sequenceπ = (d1 ≤ ·· · ≤ dn), with n≥ 3. If
(i) n odd =⇒ d(n+1)/2 ≥ 1

2(n+1);
(ii) n even =⇒ d(n−2)/2 ≥ 1

2n or d(n+2)/2 ≥ 1
2(n+2);

(iii) d i ≤ i and di+1 ≤ i + 1 =⇒ dn−i−1 ≥ n− i − 1 or dn−i ≥ n− i, for 0 ≤ i ≤
1
2(n−2);

(iv) di−1 ≤ i and di+2 ≤ i +1 =⇒ dn−i−3 ≥ n− i −2 or dn−i ≥ n− i −1, for 1≤
i ≤ 1

2(n−5),

then G contains a 2-factor.

The condition in Theorem 6 is easily seen to be monotone. Furthermore, ifπ fails to
satisfy any of (i) through (iv), thenπ is majorized by someπ ′ having a realizationG′

without a 2-factor. In particular, note that

• if (i) fails, then π is majorized byπ ′ =
(

1
2(n− 1)

)(n+1)/2
(n− 1)(n−1)/2, having

realizationK(n−1)/2+K(n+1)/2;

• if (ii) fails, then π is majorized byπ ′ =
(

1
2(n− 2)

)(n−2)/2(1
2n
)2
(n− 1)(n−2)/2,

having realizationK(n−2)/2+(K(n−2)/2∪K2);
• if (iii) fails for some i, thenπ is majorized byπ ′ = i i(i + 1)1(n− i − 2)n−2i−2

(n− i −1)1(n−1)i , having realizationKi +(Ki+1∪Kn−2i−1) together with an edge
joining Ki+1 andKn−2i−1;
• if (iv) fails for some i, thenπ is majorized byπ ′ = i i−1(i +1)3(n− i −3)n−2i−5

(n− i −2)3(n−1)i , having realizationKi +(Ki+2∪Kn−2i−2) together with three in-
dependent edges joiningKi+2 andKn−2i−2.

It is immediate that none of the above realizations contain a2-factor. Hence,
Theorem 6 is weakly optimal, and the condition of the theoremis best monotone.

Proof of Theorem 6 Supposeπ satisfies (i) through (iv), butG has no 2-factor. We
may assume the addition of any missing edge toG creates a 2-factor. Letv1, . . . ,vn

be the vertices ofG, with respective degreesd1 ≤ ·· · ≤ dn, and assumev j ,vk are a
nonadjacent pair withj+k as large as possible, andd j ≤ dk. Thenv j must be adjacent
to vk+1,vk+2, . . . ,vn and so

d j ≥ n−k. (2)

Similarly, vk must be adjacent tov j+1, . . . ,vk−1,vk+1, . . . ,vn, and so

dk ≥ n− j −1. (3)

SinceG+(v j ,vk) has a 2-factor,G has a spanning subgraph consisting of a pathP
joining v j andvk, andt ≥ 0 cyclesC1, . . . ,Ct , all vertex disjoint.

We may also assumev j ,vk andP are chosen such that ifv,w are any nonadja-
cent vertices withdG(v) = d j anddG(w) = dk, and if P′ is any(v,w)-path such that
G−V(P′) has a 2-factor, then|P′| ≤ |P|. Otherwise, re-index the set of vertices of
degreed j (resp.,dk) so thatv (resp.,w) is given the highest index in the set.
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SinceG has no 2-factor, we cannot have independent edges between{v j ,vk} and
two consecutive vertices on any of theCµ , 0 ≤ µ ≤ t. Similarly, we cannot have
dP(v j)+ dP(vk) ≥ |V(P)|, since otherwise〈V(P)〉 is hamiltonian andG contains a
2-factor. This means

dCµ (v j)+dCµ (vk)≤ |V(Cµ)| for 0≤ µ ≤ t,

and dP(v j)+dP(vk)≤ |V(P)|−1.
(4)

It follows immediately that
d j +dk ≤ n−1. (5)

We distinguish two cases ford j +dk.

CASE 1: d j +dk ≤ n−2.

Using (3), we obtain

d j ≤ (n−2)−dk ≤ (n−2)− (n− j −1) = j −1.

Take i,m so thati = d j = j −m, wherem≥ 1. By Case 1 we havei ≤ 1
2(n− 2).

Since alsodi = d j−m ≤ d j = i anddi+1 = d j−m+1 ≤ d j = i, condition (iii) implies
dn−( j−m)−1 ≥ n− ( j −m)−1 ordn−( j−m) ≥ n− ( j −m). In either case,

dn−( j−m) ≥ n− ( j −m)−1. (6)

Addingd j = j −m to (6), we obtain

d j +dn− j+m ≥ n−1. (7)

But d j +dk ≤ n−2 and (7) together given− j +m> k, hencej +k< n+m. On the
other hand, (2) givesj −m= d j ≥ n−k, hencej +k≥ n+m, a contradiction. ⊓⊔

CASE 2: d j +dk = n−1.

In this case we have equality in (5), hence all the inequalities in (4) become equalities.
In particular, this implies that every cycleCµ , 1≤ µ ≤ t, satisfies one of the following
conditions:
(a) Every vertex inCµ is adjacent tov j (resp.,vk), and none are adjacent tovk (resp.,

v j ), or
(b) |V(Cµ)| is even, andv j ,vk are both adjacent to the same alternate vertices onCµ .

We call a cycle of type (a) aj-cycle(resp.,k-cycle), and a cycle of type (b) a( j,k)-
cycle. SetA=

⋃

j-cyclesCV(C), B=
⋃

k-cyclesCV(C), andD =
⋃

( j,k)-cyclesCV(C), and

let a
.
= |A|, b

.
= |B|, andc

.
= 1

2|D|.
Vertices inV(G)−{v j ,vk} which are adjacent to both (resp., neither) ofv j ,vk will

be calledlarge (resp.,small) vertices. In particular, the vertices of each( j,k)-cycle
are alternately large and small, and hence there arec small andc large vertices among
the( j,k)-cycles.

By the definitions ofa,b,c, noting that a cycle has at least 3 vertices, we have the
following.
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Observation 1 We have a= 0 or a≥ 3, b= 0 or b≥ 3, and c= 0 or c≥ 2.

By the choice ofv j ,vk andP, we also have the following observations.

Observation 2
(a) If (u,vk) /∈ E(G), then dG(u)≤ d j ; if (u,v j) /∈ E(G), then dG(u)≤ dk.
(b) A vertex in A has degree at most dj −1.
(c) A vertex in B has degree at most dk−1.
(d) A small vertex in D has degree at most dj −1.

Proof Part (a) follows directly from the choice ofv j ,vk as nonadjacent withdG(v j)+
dG(vk) = d j +dk maximal.

For (b), consider anya∈ A, with saya
.
= vℓ. Since(vℓ,vk) /∈ E(G), we haveℓ < j

by the maximality ofj +k, and sodG(a)≤ d j . If dG(a) = d j , then since each vertex
in A is adjacent tov j , we can combine the pathP and the j-cycleCµ containinga
(leaving the other cyclesCµ alone) into a pathP′ joining a andvk such thatG−V(P′)
has a 2-factor and|P′| > |P|, contradicting the choice ofP. ThusdG(a) ≤ d j − 1,
proving (b).

Parts (c) and (d) follow by a similar arguments. ⊓⊔

Let p
.
= |V(P)|, and let us re-indexP asv j = w1,w2, . . . ,wp = vk. By the case as-

sumption,dP(w1)+dP(wp) = p−1.
Assume first thatp = 3. Thend j = a+ c+1 anddk = b+ c+1, so thatb ≥ a.

Moreover,n= a+b+2c+3 and there arec+1 large vertices andc small vertices.
If b≥ 3, the large vertexw2 is not adjacent to a vertex inA or to a small vertex

in D, or elseG contains a 2-factor. Thusw2 has degree at mostn−1− (a+ c), and
by Observations 2 (b,c,d),π is majorized by

π1 = (a+c)a+c(a+c+1)1(b+c)b(b+c+1)1(n−1− (a+c))1(n−1)c.

Settingi = a+c, so that 0≤ i = a+c= (n−3)− (b+c)≤ 1
2(n−3), π1 becomes

π1 = i i(i +1)1(n− i −3)b(n− i −2)1(n− i −1)1(n−1)c.

Sinceπ1 majorizesπ, we havedi ≤ i, di+1 ≤ i + 1, dn−i−1 = dn−(a+c+1) ≤ n− i −
2, anddn−i = dn−(a+c) ≤ n− i − 1, andπ violates condition (iii). Henceb = 0 by
Observation 1, and a fortioria= 0.

But if a = b = 0, thenc = 1
2(n− 3), n is odd, and by Observation 2 (d),π is

majorized by

π2 =
(

1
2(n−3)

)(n−3)/2(1
2(n−1)

)2
(n−1)(n−1)/2.

Sinceπ2 majorizesπ, we haved(n+1)/2 ≤ 1
2(n−1), andπ violates condition (i).

Hence we assumep≥ 4.
We make several further observations regarding the possible adjacencies ofv j ,vk

into the pathP.

Observation 3 For all m, 1≤ m≤ p−1, we have(w1,wm+1) ∈ E(G) if and only if
(wp,wm) /∈ E(G).
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Proof If (w1,wm+1) ∈ E(G), then (wp,wm) /∈ E(G), since otherwise〈V(P)〉 is
hamiltonian andG has a 2-factor. The converse follows sincedP(w1) + dP(wp) =
p−1. ⊓⊔

Observation 4 If (w1,wm),(w1,wm+1) ∈ E(G) for some m,3≤ m≤ p−3, then we
have(w1,wm+2) ∈ E(G).

Proof If (w1,wm+2) /∈ E(G), then(wp,wm+1) ∈ E(G) by Observation 3. But since
(w1,wm) ∈ E(G), this means that〈V(P)〉 would have a 2-factor consisting of the
cycles(w1,w2, . . . ,wm,w1) and(wp,wm+1,wm+2, . . . ,wp), and thusG would have a
2-factor, a contradiction. ⊓⊔

Observation 4 implies that ifw1 is adjacent to consecutive verticeswm,wm+1 ∈V(P)
for somem≥ 3, thenw1 is adjacent to all of the verticeswm,wm+1, . . . ,wp−1.

Observation 5 If (w1,wm),(w1,wm−1) /∈ E(G) for some5 ≤ m≤ p− 1, then we
have(w1,wm−2) /∈ E(G).

Proof If (w1,wm) /∈ E(G), then(wp,wm−1) ∈ E(G) by Observation 3. So if also
(w1,wm−2) ∈ E(G), then〈V(P)〉 would have a 2-factor as in the proof of Observa-
tion 4, leading to the same contradiction. ⊓⊔

Observation 5 implies that ifw1 is not adjacent to two consecutive verticeswm−1,wm

onP for somem≤ p−1, thenw1 is not adjacent to any ofw3, . . . ,wm−1,wm.
By Observation 3, the adjacencies ofw1 into P completely determine the adja-

cencies ofwp into P. But combining Observations 4 and 5, we see that the adjacen-
cies ofw1 andwp into P must appear as shown in Figure 1, for someℓ, r ≥ 0. In
summary,w1 will be adjacent tor ≥ 0 consecutive verticeswp−r , . . . ,wp−1 (where
wα , . . . ,wβ is taken to be empty ifα > β ), wp will be adjacent toℓ ≥ 0 consecutive
verticesw2, . . . ,wℓ+1, andw1,wp are each adjacent to the verticeswℓ+3,wℓ+5, . . . ,
wp−r−4,wp−r−2. Note thatℓ= p−2 impliesr = 0, andr = p−2 impliesℓ= 0.

Fig. 1 The adjacencies ofw1,wp onP.

Counting neighbors ofw1 andwp we get their degrees as follows.
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Observation 6

d j = dG(w1) =







a+c+1, if ℓ= p−2, r = 0,

a+c+ p−2, if r = p−2, ℓ= 0,

a+c+ r + 1
2(p− r − ℓ−1); otherwise;

dk = dG(wp) =







b+c+ p−2, if ℓ= p−2, r = 0,

b+c+1, if r = p−2, ℓ= 0,

b+c+ ℓ+ 1
2(p− r − ℓ−1); otherwise.

We next prove some observations to limit the possibilities for (a,b) and(ℓ, r).

Observation 7 If (w1,wp−1) ∈ E(G) (resp.,(w2,wp) ∈ E(G)), then we have b= 0
(resp., a= 0).

Proof If b 6= 0, there exists ak-cycleC
.
= (x1,x2, . . . ,xs,x1). But if also(w1,wp−1)∈

E(G), then (w1,w2, . . . ,wp−1,w1) and (wp,x1, . . . ,xs,wp) would be a 2-factor in
〈V(C)∪V(P)〉, implying a 2-factor inG. The proof that(w2,wp) ∈ E(G) implies
a= 0 is symmetric. ⊓⊔

From Observation 6, we have

0≤ dk−d j = b−a+







p−3, if ℓ= p−2, r = 0,

3− p, if r = p−2, ℓ= 0,

ℓ− r, otherwise.

(8)

From this, we obtain

Observation 8 ℓ≥ r.

Proof Suppose firstr 6= p− 2. If r > ℓ ≥ 0, thenb > a ≥ 0 sinceb+ ℓ ≥ a+ r
by (8). But r > 0 implies (w1,wp−1) ∈ E(G), and thusb = 0 by Observation 7, a
contradiction.

Suppose thenr = p−2≥ 2. Thenb > a ≥ 0, sinceb ≥ a+ p−3 by (8). Since
r > 0, we have the same contradiction as in the previous paragraph. ⊓⊔

Observation 9 If r ≥ 1, thenℓ≤ 1.

Proof Else we have(w1,wp−1),(wp,w2),(wp,w3) ∈ E(G), and(w1,w2,wp,w3, . . . ,
wp−1,w1) would be a hamiltonian cycle in〈V(P)〉. ThusG would have a 2-factor, a
contradiction. ⊓⊔

Observations 8 and 9 together limit the possibilities for(ℓ, r) to (1,1) and(ℓ,0) with
0 ≤ ℓ ≤ p−2. We also cannot have(ℓ, r) = (p−3,0), sincewp is always adjacent
to wp−1, and so we would haveℓ = p−2 in that case. And we cannot have(ℓ, r) =
(p−4,0), since thenp− r − ℓ−1 is odd, violating Observation 6. To complete the
proof of Theorem 6, we will deal with the remaining possibilities in a number of
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cases, and show that all of them lead to a contradiction of oneor more of conditions (i)
through (iv).

Before doing so, let us define the spanning subgraphH of G by letting E(H)
consist of the edges in the cyclesCµ , 0≤ µ ≤ t, or in the pathP, together with the
edges incident tow1 or wp. Note that the edges incident tow1 or wp completely
determine the large or small vertices inG. In the proofs of the cases below, any
adjacency beyond those indicated would create an edgee such thatH + e, and a
fortiori G, contains a 2-factor.

CASE 2.1: (ℓ, r) = (1,1).

Since (w1,wp−1),(w2,wp) ∈ E(G), we havea = b = 0, by Observation 7. Using
Observation 6 this means thatd j = dk =

1
2(n−1), and hencen is odd. Additionally,

there arec+ 1
2(p− 3) = 1

2(n− 3) small vertices. Each of these small vertices has
degree at mostd j by Observation 2 (a), and soπ is majorized by

π3 =
(

1
2(n−1)

)(n+1)/2
(n−1)(n−1)/2.

But π3 (a fortiori π) violates condition (i). ⊓⊔

CASE 2.2: (ℓ, r) = (0,0).

By Observation 6,d j = a+ c+ 1
2(p−1) anddk = b+ c+ 1

2(p−1), so thatb ≥ a.
Also, there arec+ 1

2(p−3) large andc+ 1
2(p−5) small vertices.

• By Observation 2 (b,c), each vertex inA (resp.,B) has degree at mostd j −1 =
a+c+ 1

2(p−3) (resp.,dk−1= b+c+ 1
2(p−3)).

• Each small vertex is adjacent to at most the large vertices (otherwiseG contains
a 2-factor), and so each small vertex has degree at mostc+ 1

2(p−3).
• The vertexw2 (resp.,wp−1) is adjacent to at most the large vertices andw1 (resp.,
wp) (otherwiseG contains a 2-factor), and sow2,wp−1 each have degree at most
c+ 1

2(p−1).

Thusπ is majorized by

π4 =
(
c+ 1

2(p−3)
)c+(p−5)/2(

c+ 1
2(p−1)

)2(
a+c+ 1

2(p−3)
)a

(
a+c+ 1

2(p−1)
)1(

b+c+ 1
2(p−3)

)b(
b+c+ 1

2(p−1)
)1
(n−1)c+(p−3)/2.

Settingi = a+ c+ 1
2(p−1), so that 2≤ i = 1

2(n− (b−a)−1) ≤ 1
2(n−1), the

sequenceπ4 becomes

π4 = (i −a−1)i−a−2(i −a)2(i −1)ai1(n− i −2)n−2i+a−1(n− i −1)1(n−1)i−a−1.

If 2 ≤ i ≤ 1
2(n−2), then, sinceπ4 majorizesπ, we havedi ≤ i, di+1 ≤ i, dn−i−1 ≤

n− i −2, anddn−i ≤ n− i −2, andπ violates condition (iii).
If i = 1

2(n−1), thenn is odd, andπ4 reduces to

π ′
4 =

(
1
2(n−3)−a

)(n−5)/2−a(1
2(n−1)−a

)2(1
2(n−3)

)2a

(
1
2(n−1)

)2
(n−1)(n−3)/2−a.



Degree Sequences and the Existence ofk-Factors 11

Sinceπ ′
4 majorizesπ, we haved(n+1)/2 ≤ 1

2(n−1), andπ violates condition (i). ⊓⊔

CASE 2.3: (ℓ, r) = (1,0)

By Observation 7,a = 0, and thus by Observation 6,d j = c+ 1
2(p− 2) anddk =

b+ c+ 1
2 p. Also, there arec+ 1

2(p− 2) large andc+ 1
2(p− 4) small vertices. If

p= 4 thenℓ= 2, a contradiction, and hencep≥ 6.
• By Observation 2 (c), each vertex inB has degree at mostdk − 1 = b+ c+
1
2(p−2).
• Each small vertex is adjacent to at most the large vertices, and so each small
vertex has degree at mostc+ 1

2(p−2).
• The vertexwp−1 is adjacent to at mostwp and the large vertices, and sowp−1 has
degree at mostc+ 1

2 p.

Thusπ is majorized by

π5 =
(
c+ 1

2(p−2)
)c+(p−2)/2(

c+ 1
2 p

)1(
b+c+ 1

2(p−2)
)b

(
b+c+ 1

2 p
)1
(n−1)c+(p−2)/2.

Settingi = c+ 1
2(p−2), so that 2≤ i = 1

2(n−b−2)≤ 1
2(n−2), π5 becomes

π5 = i i(i +1)1(n− i −2)n−2i−2(n− i −1)1(n−1)i .

If 2 ≤ i ≤ 1
2(n− 3), then, sinceπ5 majorizesπ, we havedi ≤ i, di+1 ≤ i + 1,

dn−i−1 ≤ n− i −2, anddn−i ≤ n− i −1, andπ violates condition (iii).
If i = 1

2(n−2), thenn is even, andπ5 reduces to

π ′
5 =

(
1
2n−1

)n/2−1(1
2n
)2
(n−1)n/2−1.

Sinceπ ′
5 majorizesπ, we havedn/2−1 ≤ 1

2n− 1 anddn/2+1 ≤ 1
2n, andπ violates

condition (ii). ⊓⊔

CASE 2.4: (ℓ, r) = (ℓ,0), where2≤ ℓ≤ p−5

We havea= 0 by Observation 7, andp− ℓ≥ 5 by Case 2.4. By Observation 6,d j =
c+ 1

2(p−ℓ−1) anddk = b+c+ℓ+ 1
2(p−ℓ−1). Moreover, there arec+ 1

2(p−ℓ−1)
large vertices includingw2, andc+ 1

2(p− ℓ−3) small vertices.
• By Observation 2 (c), each vertex inB has degree at mostdk − 1 = b+ c+ ℓ+
1
2(p− ℓ−3).
• Each small vertex other thanwℓ+2 is adjacent to at most the large vertices ex-
ceptw2, and so each small vertex other thanwℓ+2 has degree at mostc+ 1

2(p−ℓ−3).
• The vertexwℓ+2 is not adjacent towp, and so by Observation 2 (a),wℓ+2 has
degree at mostd j = c+ 1

2(p− ℓ−1).
• The vertexwp−1 is adjacent to at mostwp and the large vertices exceptw2, and
sowp−1 has degree at mostc+ 1

2(p− ℓ−1).
• Eachwm, 3≤ m≤ ℓ, is adjacent to at mostwp, the large vertices, the vertices
in B, and{w3, . . . ,wℓ+1}−{wm}. Hence each suchwm has degree at mostb+c+ℓ+
1
2(p− ℓ−3).
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• The vertexw2 is adjacent to at mostw1,wp, the other large vertices, the vertices
in B, and{w3, . . . ,wℓ+1}. Hencew2 has degree at mostb+c+ ℓ+ 1

2(p− ℓ−1).
• The vertexwℓ+1 is not adjacent tow1, and so, by Observation 2 (a), vertexwℓ+1

has degree at mostdk = b+c+ ℓ+ 1
2(p− ℓ−1).

Thusπ is majorized by

π6 =
(
c+ 1

2(p− ℓ−3)
)c+(p−ℓ−5)/2(

c+ 1
2(p− ℓ−1)

)3

(
b+c+ ℓ+ 1

2(p− ℓ−3)
)b+ℓ−2(

b+c+ ℓ+ 1
2(p− ℓ−1)

)3
(n−1)c+(p−ℓ−3)/2.

Settingi = c−1+ 1
2(p− ℓ−1), so that 1≤ i = 1

2(n−b− ℓ−3) ≤ 1
2(n−5), π6

becomes

π6 = i i−1(i +1)3(i +b+ ℓ)b+ℓ−2(i +b+ ℓ+1)3(n−1)i .

Sinceπ6 majorizesπ, we havedi−1 ≤ i, di+2 ≤ i +1, dn−i−3 ≤ i +b+ ℓ = n− i −3,
anddn−i ≤ i +b+ ℓ+1= n− i −2, and thusπ violates condition (iv). ⊓⊔

CASE 2.5: (ℓ, r) = (p−2,0)

We havea = 0, by Observation 7. By Observation 6, we then haved j = c+ 1 and
dk = b+ c+ p− 2. If d1 ≤ 1, then condition (iii) withi = 0 impliesdn−1 ≥ n− 1,
which means there are at least 2 vertices adjacent to all other vertices, a contradiction.
Hencec+1 = d j ≥ d1 ≥ 2, and soc ≥ 2 by Observation 1. Finally, there arec+1
large vertices includingw2, andc small vertices.
• By Observation 2 (a), the vertices inB have degree at mostdk = b+c+ p−2.
• By Observation 2 (d), the small vertices inD have degree at mostd j −1= c.
• The vertexw2 is not adjacent to the small vertices inD, and sow2 has degree at
mostn−1−c= b+c+ p−1.
• The verticesw3, . . . ,wp−1 have degree at mostdk = b+ c+ p− 2 by Observa-
tion 2 (a), since none of them are adjacent tow1 = v j .

Thusπ is majorized by

π7 = cc(c+1)1(b+c+ p−2)b+p−2(b+c+ p−1)1(n−1)c.

Settingi = c, so that 2≤ c= i = 1
2(n−b− p)≤ 1

2(n−4), π7 becomes

π7 = i i(i +1)1(n− i −2)n−2i−2(n− i −1)1(n−1)i .

Sinceπ7 majorizesπ, we havedi ≤ i, di+1 ≤ i +1, dn−i−1 ≤ n− i −2, anddn−i ≤
n− i −1, andπ violates condition (iii). ⊓⊔

The proof of Theorem 6 is complete. �
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4 Sufficient condition for the existence of ak-factor, k≥ 2

The increase in complexity of Theorem 6 (k = 2) compared to Corollary 5 (k = 1)
suggests that the best monotone condition forπ to be forciblyk-factor graphical may
become unwieldy ask increases. Indeed, we make the following conjecture.

Conjecture 7 The best monotone condition for a degree sequence of length nto be
forcibly k-factor graphical requires checking at least f(k) nonredundant conditions
(where each condition may require O(n) checks), where f(k) grows superpolynomi-
ally in k.

Kriesell [10] has verified such rapidly increasing complexity for the best monotone
condition forπ to be forciblyk-edge-connected. Indeed, Kriesell has shown such a
condition entails checking at leastp(k) nonredundant conditions, wherep(k) denotes

the number of partitions ofk. It is well-known [8] thatp(k)∼ eπ
√

2k/3

4
√

3k
.

The above conjecture suggests the desirability of obtaining a monotone condition
for π to be forciblyk-factor graphical which does not require checking a superpoly-
nomial number of conditions. Our goal in this section is to prove such a condition for
k≥ 2. Since our condition will require Tutte’s Factor Theorem [2,16], we begin with
some needed background.

Belck [2] and Tutte [16] characterized graphsG that do not contain ak-factor. For
disjoint subsetsA,B of V(G), let C =V(G)−A−B. We call a componentH of 〈C〉
odd if k|H|+e(H,B) is odd. The number of odd components of〈C〉 is denoted by
oddk(A,B). Define

Θk(A,B)
.
= k|A|+ ∑

u∈B
dG−A(u)−k|B|−oddk(A,B).

Theorem 8 Let G be a graph on n vertices and k≥ 1.
(a) [16] For any disjoint A,B⊆V(G), Θk(A,B)≡ kn (mod 2);
(b) [2,16]G does not contain a k-factor if and only ifΘk(A,B)< 0, for some disjoint

A,B⊆V(G).

We call any disjoint pairA,B ⊆ V(G) for which Θk(A,B) < 0 a k-Tutte-pairfor G.
Note that ifkn is even, thenA,B is ak-Tutte-pair forG if and only if

k|A|+ ∑
u∈B

dG−A(u)≤ k|B|+oddk(A,B)−2.

Moreover, for allu∈B we havedG(u)≤ dG−A(u)+ |A|, so ∑
u∈B

dG(u)≤ ∑
u∈B

dG−A(u)+

|A||B|. Thus for eachk-Tutte-pairA,B we have

∑
u∈B

dG(u)≤ k|B|+ |A||B|−k|A|+oddk(A,B)−2. (9)

Our main result in this section is the following condition for a graphical degree
sequenceπ to be forciblyk-factor graphical. The condition will guarantee that no
k-Tutte-pair can exist, and is readily seen to be monotone. Weagain setd0 = 0.
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Theorem 9 Let π = (d1 ≤ ·· · ≤ dn) be a graphical degree sequence, and let k≥ 2
be an integer such that kn is even. Suppose
(i) d1 ≥ k;
(ii) for all a ,b,q with 0 ≤ a < 1

2n, 0 ≤ b ≤ n−a andmax{0,a(k−b)+2} ≤ q ≤

n−a−b so that
b
∑

i=1
di ≤ kb+ab− ka+q−2, the following holds: Setting r=

a+k+q−2 and s= n−max{0,b−k+1}−max{0,q−1}−1, we have
(∗) r ≤ s and db ≤ r, or r > s and dn−a−b ≤ s =⇒ dn−a ≥ max{r,s}+1.

Thenπ is forcibly k-factor graphical.

Proof Let n andk ≥ 2 be integers withkn even. Supposeπ satisfies (i) and (ii) in
the theorem, but has a realizationG with no k-factor. This means thatG has at least
onek-Tutte-pair.

Following [7], we call ak-Tutte-pairA,B minimalif eitherB=∅, orΘk(A,B′)≥ 0
for all proper subsetsB′ ⊂ B. We then have

Lemma 1 [7] Let k≥ 2, and let A,B be a minimal k-Tutte-pair for a graph G with
no k-factor. If B6=∅, then∆(〈B〉)≤ k−2.

Next let A,B be ak-Tutte-pair forG with A as large as possible, andA,B minimal.
Also, setC=V(G)−A−B. We establish some further observations.

Lemma 2
(a) |A|< 1

2n.
(b) For all v∈C, e(v,B)≤ min{k−1, |B|}.
(c) For all u∈ B, dG(u)≤ |A|+k+oddk(A,B)−2.

Proof Suppose|A| ≥ 1
2n, so that|A| ≥ |B|+ |C|. Then we have

Θk(A,B) = k|A|+ ∑
u∈B

dG−A(u)−k|B|−oddk(A,B)≥ k(|A|− |B|)−oddk(A,B)

≥ k|C|−oddk(A,B)> |C|−oddk(A,B)≥ 0,

which contradicts thatA,B is ak-Tutte-pair.
For (b), clearlye(v,B) ≤ |B|. If e(v,B) ≥ k for somev ∈ C, movev to A, and

consider the change in each term inΘk(A,B):

k|A|
︸︷︷︸

increases byk

+ ∑
u∈B

dG−A(u)

︸ ︷︷ ︸

decreases bye(v,B)≥ k

− k|B|− oddk(A,B)

︸ ︷︷ ︸

decreases by≤ 1

.

So by Theorem 8 (a),A∪{v},B is also ak-Tutte-pair inG, contradicting the assump-
tion thatA,B is ak-Tutte-pair withA as large as possible.

And for (c), suppose thatdG(t) ≥ |A|+ k+oddk(A,B)−1 for somet ∈ B. This
implies thatdG−A(t)≥ k+oddk(A,B)−1. Now movet toC, and consider the change
in each term inΘk(A,B):

k|A|+ ∑
u∈B

dG−A(u)

︸ ︷︷ ︸

decreases by

dG−A(t)≥k+oddk(A,B)−1

− k|B|
︸︷︷︸

decreases byk

− oddk(A,B)

︸ ︷︷ ︸

decreases by≤ oddk(A,B)

.
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So by Theorem 8 (a),A,B−{t} is also ak-Tutte-pair forG, contradicting the mini-
mality of A,B. ⊓⊔

We introduce some further notation. Seta
.
= |A|, b

.
= |B|, c

.
= |C| = n−a−b, q

.
=

oddk(A,B), r
.
= a+ k+ q− 2, ands

.
= n−max{0,b− k+ 1}−max{0,q− 1}− 1.

Using this notation, (9) can be written as

∑
u∈B

dG(u)≤ kb+ab−ka+q−2. (10)

By Lemma 2 (a) we have 0≤ a < 1
2n. SinceB is disjoint fromA, we trivially have

0≤ b≤ n−a. And since the number of odd components ofC is at most the number
of elements ofC, we are also guaranteed thatq ≤ n− a− b. Finally, since for all
verticesv we havedG(v) ≥ d1 ≥ k, we get from (10) thatq≥ ∑

u∈B
dG(u)−kb−ab+

ka+ 2 ≥ kb− kb− ab+ ka+ 2 = a(k− b)+ 2, henceq ≥ max{0,a(k− b)+ 2}. It
follows thata,b,q satisfy the conditions in Theorem 9 (ii).

Next, by Lemma 2 (c) we have that

for all u∈ B: dG(u)≤ r. (11)

If C 6=∅ (i.e., if a+b< n), let mbe the size of a largest component of〈C〉. Then,
using Lemma 2 (b), for allv∈C we have

dG(v) = e(v,A)+e(v,B)+e(v,C)≤ |A|+min{k−1, |B|}+m−1

= a+b−max{0,b−k+1}+m−1.

Clearly m≤ |C| = n−a−b. If q ≥ 1, thenm≤ n−a−b− (q−1), sinceC has at
leastq components. Thusm≤ n−a−b−max{0,q−1}. Combining this all gives

for all v∈C: dG(v)≤ n−max{0,b−k+1}−max{0,q−1}−1= s. (12)

Next notice that we cannot haven− a = 0, because otherwiseB = C = ∅ and
oddk(A,B) = 0, and (9) becomes 0≤ −ka−2, a contradiction. From (11) and (12)
we see that each of then−a> 0 vertices inB∪C has degree at most max{r,s}, and
sodn−a ≤ max{r,s}.

If r ≤ s, then each of theb vertices inB has degree at mostr, and sodb ≤ r. This
also holds ifb= 0, since we setd0 = 0, andr = a+k+q−2≥ 0 becausek≥ 2.

If r > s, then each ofn−a−b vertices inC has degree at mosts by (12), and so
dn−a−b ≤ s. This also holds ifn−a−b= 0, since we setd0 = 0 and

s= n−max{0,b−k+1}−max{0,q−1}−1

≥ min{n−1,n−q,(n−b)+(k−2),(n−q−b)+(k−1)} ≥ 0,

sincek≥ 2 andq≤ n−a−b.
So we always haver ≤ s anddb ≤ r, or r > s anddn−a−b ≤ s, but alsodn−a ≤

max{r,s}, contradicting assumption (ii)(∗) in Theorem 9. �
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How good is Theorem 9? We know it is not best monotone fork= 2. For example, the
sequenceπ = 4463104 satisfies Theorem 6, but not Theorem 9 (it violates(∗) when
a= 4, b= 5 andq= 2, with r = 6 ands= 5). And it is very unlikely the theorem is
best monotone for anyk ≥ 3. Nevertheless, Theorem 9 appears to be quite tight. In
particular, we conjecture for eachk≥ 2 there exists aπ = (d1 ≤ ·· · ≤ dn) such that
• (π,k) satisfies Theorem 9, and

• there exists a degree sequenceπ ′, with π ′ ≤ π and
n
∑

i=1
d′

i =
( n

∑
i=1

di

)

− 2, such

thatπ ′ is not forciblyk-factor graphical.

Informally, for eachk ≥ 2, there exists a pair(π,π ′) with π ′ ‘just below’ π such
that Theorem 9 detects thatπ is forcibly k-factor graphical, whileπ ′ is not forcibly
k-factor graphical.

For example, letn≡ 2 (mod 4) andn≥ 6, and consider the sequences

πn
.
=
(

1
2n
)n/2+1

(n−1)n/2−1 and π ′
n
.
=
(

1
2n−1

)2(1
2n
)n/2−1

(n−1)n/2−1.

It is easy to verify that the unique realization ofπ ′
n fails to have ak-factor, fork =

1
4(n+2)≥ 2. On the other hand, we have programmed Theorem 9, and verified thatπn

satisfies Theorem 9 withk= 1
4(n+2) for all values ofnup ton= 2502. We conjecture

that
(
πn,

1
4(n+2)

)
satisfies Theorem 9 for alln≥ 6 with n≡ 2 (mod 4).

There is another sense in which Theorem 9 seems quite good. A graph G is
t-toughif t ·ω(G) ≤ |X|, for everyX ⊆V(G) with ω(G−X) > 1, whereω(G−X)
denotes the number of components ofG−X. In [1], the authors give the following
best monotone condition forπ to be forciblyt-tough, fort ≥ 1.

Theorem 10 [1] Let t ≥ 1, and let π = (d1 ≤ ·· · ≤ dn) be graphical with n>
(t +1)⌈t⌉/t. If

d⌊i/t⌋ ≤ i =⇒ dn−i ≥ n−⌊i/t⌋, for t ≤ i < tn/(t +1),

thenπ is forcibly t-tough graphical.

We also have the following classical result.

Theorem 11 [7] Let k≥ 1, and let G be a graph on n≥ k+1 vertices with kn even.
If G is k-tough, then G has a k-factor.

Based on checking many examples with our program, we conjecture that there is a
relation between Theorems 10 and 9, which somewhat mirrors Theorem 11.

Conjecture 12 Let π = (d1 ≤ ·· · ≤ dn) be graphical, and let k≥ 2 be an integer
with n> k+1 and kn even. Ifπ is forcibly k-tough graphical by Theorem 10, thenπ
is forcibly k-factor graphical by Theorem 9.
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