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Abstract

We prove a general result on graph factors modulo k. A special case
says that, for each natural number k, every (12k − 7)-edge-connected
graph with an even number of vertices contains a spanning subgraph
in which each vertex has degree congruent to k modulo 2k.
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1 Introduction

Jaeger [7], [8] generalized Tutte’s 3-flow conjecture to the following conjecture
which he called the the circular flow conjecture:

If k is an odd natural number, and G is a (2k− 2)-edge-connected graph,
then G has an orientation such that each vertex has the same indegree and
outdegree modulo k.

This conjecture does not extend to the case where k is an even number
(because a vertex of odd degree cannot be balanced modulo an even number)
also not in the weak version where we replace the edge-connectivity 2k − 2
by a larger function of k. However, the weak version becomes true also when
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k is odd in the following version proved in [12]: Let k be a natural number,
and let G be a (2k2 + k)-edge-connected graph with n vertices v1, v2, . . . , vn.
Let di be an integer for each i = 1, 2, . . . , n such that the sum of all di is
congruent (mod k) to the number of edges of G. Then G has an orientation
such that each vi has outdegrees di modulo k. In [9] the quadratic bound
(2k2 + k) was improved to the linear bound 3k − 3.

This orientation result has applications to instances of the graph decom-
position conjecture in [3] that, for every tree T , every graph of large edge-
connectivity (depending on T only) has an edge-decomposition into copies
of T (provided the size of T divides the size of the graph), see [12], [13].

It also implies the (2 + ε)-flow conjecture by Goddyn and Seymour. In
[12] an application of the weak 3-flow conjecture to the (2+ε)-flow conjecture
was discussed. However, as pointed out by a referee of an early version of the
present paper, the general orientation result in [12] implies the (2 + ε)-flow
conjecture in its full strength by the discussion in Section 9.2 in [15]. In
[14] it is shown precisely which flow values can be used in the (2 + ε)-flow
conjecture. Prior to that, the (2 + ε)-flow conjecture had been verified first
for planar graphs [6] and then for graphs on a fixed surface [16]. Apart from
these results not much was known about the conjecture, as pointed out in
[17]

In this paper we reformulate the orientation result in the weak circular
flow conjecture as a factor result for bipartite graphs and derive the special
case mentioned in the Abstract. This special case is related to results of Alon
Friedland, and Kalai [1] concerning non-empty subgraphs where all degrees
are divisible by k. Those results are based on edge-densities only, whereas
the results in the present paper need some kind of connectivity as well. To
illustrate the different nature of the results in [1] and the present note, a
special result in [1] (see also [2]) says that every graph with n vertices and
at least 2n + 1 edges contains a non-empty subgraph in which each vertex
has degree divisible by 3. Such a subgraph may be small as it may contain
vertices of degree zero. By replacing edge-density by edge-connectivity we
obtain subgraphs where all vertices have positive degrees, all divisible by 3.
Specifically, every 29-edge-connected graph with an even number of vertices
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has a spanning subgraph in which each vertex has degree 3 modulo 6.

2 Graph factors modulo k

The terminology and notation are the same as in [12] which are essentially
the same as in [4], [5], [10]. In the present paper, however, a graph may have
multiple edges (but no loops).

Theorem 1 Let k be a natural number, and let G be a (3k−3)-edge-connected
bipartite graph with n vertices v1, v2, . . . , vn and with partite sets A,B. Let
di be an integer for each i = 1, 2, . . . , n such that the sum of all di where vi
is in A is congruent (mod k) to the the sum of all di where vi is in B. Then
G has a spanning subgraph H such that

d(vi, H) ≡ di(mod k)

for i = 1, 2, . . . , n.

Proof of Theorem 1:
For each vertex vi in A, put pi = di. For each vertex vi in B, put

pi = d(vi, G)−di. Then the sum of all pi is congruent to the number of edges
modulo k. By the strengthening in [9] of Theorems 1 and 3 in [12], the edges
of G can be oriented such that each vertex vi has outdegree pi modulo k.
The edges oriented from A to B can now play the role of H.

So, Theorem 1 is an immediate consequence of Theorems 1 and 3 in [12]
and their extension in [9]. Conversely, it is easy to derive these results (except
for a weaker upper bound on the edge-connectivity needed) from Theorem 1
above because every (2k − 1)-edge-connected graph G contains a spanning
bipartite k-edge-connected subgraph H, as pointed out in Proposition 1 in
[11]. (The proof is easy: Consider a spanning bipartite subgraph with as
many edges as possible. If that subgraph has a cut with fewer than k edges,
then the corresponding partition of the vertex set can be used to find a
spanning bipartite subgraph with more edges, a contradiction.) If we wish
to orient all edges in G such that the vertices have prescribed outdegrees
modulo k, then we orient the edges in G but not in H at random, and then
we apply Theorem 1 to H resulting in a subgraph H ′. All edges in H ′ are
directed from one partite class to the other, and the edges in H but not

3



in H ′ are directed in the opposite direction. By choosing the degrees in H
appropriately (modulo k), we obtain the desired orientation of G.

Thus we may regard Theorem 1 as a reformulation of Theorem 3 in [12]
and its extension in [9]. We apply this to a result for general graphs.

Theorem 2 Let k be a natural number, and let G be a (6k−7)-edge-connected
graph with n vertices. Let di be an integer for each i = 1, 2, . . . , n such that,
for any m in {1, 2, . . . , n − 1}, there is a partition of {1, 2, . . . , n} into sets
A,B of cardinality m,n−m, respectively, such that

the sum of all di where i is in A is congruent (mod k) to the the sum of
all di where i is in B.

Then G has a spanning subgraph H such that the degrees of H are
d1, d2, . . . , dn modulo k.

Proof of Theorem 2:
By the above-mentioned observation in Proposition 1 in [11], G has a

spanning (3k − 3)-edge-connected bipartite subgraph M . Then apply the
partition condition of d1, d2, . . . , dn where m,n−m are the number of vertices
in the two partite sets of M . Theorem 2 now follows from Theorem 1.

The partition condition of d1, d2, . . . , dn is necessary because G might be
bipartite to begin with. Unfortunately, that condition puts a severe restric-
tion on the applications to non-bipartite graphs. Another weakness is that
we do not specify which vertices have which degrees, and therefore Theorem
2 is not really a factor result. However, special cases are about factors, for
example the following.

Theorem 3 Let k be a natural number, and let G be a (12k − 7)-edge-
connected graph with an even number of vertices.

Then G has a spanning subgraph H such that each vertex in H has degree
congruent to k (mod 2k).

Proof of Theorem 3: The prescribed degrees modulo 2k satisfy the par-
tition condition in Theorem 2 because the number of vertices is even. Note
that Theorem 3 is not true if k is odd and the number of vertices is odd.
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