Technical University of Denmark

Graph factors modulo k

Thomassen, Carsten

Published in:
Journal of Combinatorial Theory. Series B

Link to article, DOI:
10.1016/j.jctb.2014.01.002

Publication date:
2014

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Thomassen, C. (2014). Graph factors modulo k. Journal of Combinatorial Theory. Series B, 106, 174-177. DOI: 10.1016/j.jctb.2014.01.002

DTU Library

Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Graph factors modulo k

Carsten Thomassen *
Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800 Lyngby, Denmark/
King Abdulaziz University, Jeddah, Saudi-Arabia

January 15, 2014

Abstract

We prove a general result on graph factors modulo k. A special case says that, for each natural number k, every ($12 k-7$)-edge-connected graph with an even number of vertices contains a spanning subgraph in which each vertex has degree congruent to k modulo $2 k$.

Keywords: graph factors modulo k
MSC(2000):05C40,05C20,05C70

1 Introduction

Jaeger [7], [8] generalized Tutte's 3-flow conjecture to the following conjecture which he called the the circular flow conjecture:

If k is an odd natural number, and G is a ($2 k-2$)-edge-connected graph, then G has an orientation such that each vertex has the same indegree and outdegree modulo k.

This conjecture does not extend to the case where k is an even number (because a vertex of odd degree cannot be balanced modulo an even number) also not in the weak version where we replace the edge-connectivity $2 k-2$ by a larger function of k. However, the weak version becomes true also when

[^0]k is odd in the following version proved in [12]: Let k be a natural number, and let G be a $\left(2 k^{2}+k\right)$-edge-connected graph with n vertices $v_{1}, v_{2}, \ldots, v_{n}$. Let d_{i} be an integer for each $i=1,2, \ldots, n$ such that the sum of all d_{i} is congruent $(\bmod k)$ to the number of edges of G. Then G has an orientation such that each v_{i} has outdegrees d_{i} modulo k. In [9] the quadratic bound $\left(2 k^{2}+k\right)$ was improved to the linear bound $3 k-3$.

This orientation result has applications to instances of the graph decomposition conjecture in [3] that, for every tree T, every graph of large edgeconnectivity (depending on T only) has an edge-decomposition into copies of T (provided the size of T divides the size of the graph), see [12], [13].

It also implies the $(2+\epsilon)$-flow conjecture by Goddyn and Seymour. In [12] an application of the weak 3 -flow conjecture to the $(2+\epsilon)$-flow conjecture was discussed. However, as pointed out by a referee of an early version of the present paper, the general orientation result in [12] implies the $(2+\epsilon)$-flow conjecture in its full strength by the discussion in Section 9.2 in [15]. In [14] it is shown precisely which flow values can be used in the $(2+\epsilon)$-flow conjecture. Prior to that, the $(2+\epsilon)$-flow conjecture had been verified first for planar graphs [6] and then for graphs on a fixed surface [16]. Apart from these results not much was known about the conjecture, as pointed out in [17]

In this paper we reformulate the orientation result in the weak circular flow conjecture as a factor result for bipartite graphs and derive the special case mentioned in the Abstract. This special case is related to results of Alon Friedland, and Kalai [1] concerning non-empty subgraphs where all degrees are divisible by k. Those results are based on edge-densities only, whereas the results in the present paper need some kind of connectivity as well. To illustrate the different nature of the results in [1] and the present note, a special result in [1] (see also [2]) says that every graph with n vertices and at least $2 n+1$ edges contains a non-empty subgraph in which each vertex has degree divisible by 3 . Such a subgraph may be small as it may contain vertices of degree zero. By replacing edge-density by edge-connectivity we obtain subgraphs where all vertices have positive degrees, all divisible by 3 . Specifically, every 29-edge-connected graph with an even number of vertices
has a spanning subgraph in which each vertex has degree 3 modulo 6 .

2 Graph factors modulo k

The terminology and notation are the same as in [12] which are essentially the same as in [4], [5], [10]. In the present paper, however, a graph may have multiple edges (but no loops).

Theorem 1 Let k be a natural number, and let G be a (3k-3)-edge-connected bipartite graph with n vertices $v_{1}, v_{2}, \ldots, v_{n}$ and with partite sets A, B. Let d_{i} be an integer for each $i=1,2, \ldots, n$ such that the sum of all d_{i} where v_{i} is in A is congruent $(\bmod k)$ to the the sum of all d_{i} where v_{i} is in B. Then G has a spanning subgraph H such that

$$
d\left(v_{i}, H\right) \equiv d_{i}(\bmod k)
$$

for $i=1,2, \ldots, n$.
Proof of Theorem 1:
For each vertex v_{i} in A, put $p_{i}=d_{i}$. For each vertex v_{i} in B, put $p_{i}=d\left(v_{i}, G\right)-d_{i}$. Then the sum of all p_{i} is congruent to the number of edges modulo k. By the strengthening in [9] of Theorems 1 and 3 in [12], the edges of G can be oriented such that each vertex v_{i} has outdegree p_{i} modulo k. The edges oriented from A to B can now play the role of H.

So, Theorem 1 is an immediate consequence of Theorems 1 and 3 in [12] and their extension in [9]. Conversely, it is easy to derive these results (except for a weaker upper bound on the edge-connectivity needed) from Theorem 1 above because every $(2 k-1)$-edge-connected graph G contains a spanning bipartite k-edge-connected subgraph H, as pointed out in Proposition 1 in [11]. (The proof is easy: Consider a spanning bipartite subgraph with as many edges as possible. If that subgraph has a cut with fewer than k edges, then the corresponding partition of the vertex set can be used to find a spanning bipartite subgraph with more edges, a contradiction.) If we wish to orient all edges in G such that the vertices have prescribed outdegrees modulo k, then we orient the edges in G but not in H at random, and then we apply Theorem 1 to H resulting in a subgraph H^{\prime}. All edges in H^{\prime} are directed from one partite class to the other, and the edges in H but not
in H^{\prime} are directed in the opposite direction. By choosing the degrees in H appropriately (modulo k), we obtain the desired orientation of G.

Thus we may regard Theorem 1 as a reformulation of Theorem 3 in [12] and its extension in [9]. We apply this to a result for general graphs.

Theorem 2 Let k be a natural number, and let G be a $(6 k-7)$-edge-connected graph with n vertices. Let d_{i} be an integer for each $i=1,2, \ldots, n$ such that, for any m in $\{1,2, \ldots, n-1\}$, there is a partition of $\{1,2, \ldots, n\}$ into sets A, B of cardinality $m, n-m$, respectively, such that
the sum of all d_{i} where i is in A is congruent $(\bmod k)$ to the the sum of all d_{i} where i is in B.

Then G has a spanning subgraph H such that the degrees of H are
$d_{1}, d_{2}, \ldots, d_{n}$ modulo k.
Proof of Theorem 2:
By the above-mentioned observation in Proposition 1 in [11], G has a spanning $(3 k-3)$-edge-connected bipartite subgraph M. Then apply the partition condition of $d_{1}, d_{2}, \ldots, d_{n}$ where $m, n-m$ are the number of vertices in the two partite sets of M. Theorem 2 now follows from Theorem 1.

The partition condition of $d_{1}, d_{2}, \ldots, d_{n}$ is necessary because G might be bipartite to begin with. Unfortunately, that condition puts a severe restriction on the applications to non-bipartite graphs. Another weakness is that we do not specify which vertices have which degrees, and therefore Theorem 2 is not really a factor result. However, special cases are about factors, for example the following.

Theorem 3 Let k be a natural number, and let G be a (12k-7)-edgeconnected graph with an even number of vertices.

Then G has a spanning subgraph H such that each vertex in H has degree congruent to $k(\bmod 2 k)$.

Proof of Theorem 3: The prescribed degrees modulo $2 k$ satisfy the partition condition in Theorem 2 because the number of vertices is even. Note that Theorem 3 is not true if k is odd and the number of vertices is odd.

References

[1] N. Alon, S. Friedland, and G. Kalai, Regular subgraphs of almost regular graphs, J. Combinatorial Theory, Ser B 37 (1984) 79-91.
[2] N. Alon, S. Friedland, and G. Kalai, Every 4-regular graph plus an edge contains a 3-regular subgraph, J. Combinatorial Theory, Ser B 37 (1984) 92-93.
[3] J. Bárat and C. Thomassen, Claw-decompositions and Tutteorientations. J. Graph Theory 52 (2006) 135-146.
[4] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications. The MacMillan Press Ltd. (1976).
[5] R. Diestel, Graph Theory. Springer Verlag (1997) and 2nd edition (2000).
[6] W. Klostermeyer and C.Q. Zhang, $(2+\epsilon)$-coloring of planar graphs with large girth, J. Graph Theory 33 (2000) 109-119.
[7] F. Jaeger, On circular flows in graphs. Proc.Colloq. Math. János Bolyai 37(1982) 391-402.
[8] F. Jaeger, Nowhere-zero flow problems. In: Selected Topics in Graph Theory 3 edited by L. W. Beineke and R. J. Wilson. Academic Press (1988) 71-95.
[9] L.M. Lovász, C. Thomassen, C. Q. Zhang and Y. Wu, Nowhere-zero 3 -flows and modulo k-orientations, J. Combinatorial Theory, Ser B 103 (2013) 587-598.
[10] B. Mohar and C. Thomassen, Graphs on Surfaces. Johns Hopkins University Press (2001).
[11] C. Thomassen, Edge-decompositions of highly connected graphs into paths of length 4. Abh. Math. Seminar Hamburg 78 (2008) 17-26.
[12] C. Thomassen, The weak 3-flow conjecture and the weak circular flow conjecture, J. Combinatorial Theory, Ser B 102 (2012) 521-529.
[13] C. Thomassen, Decomposing a graph into bistars, J. Combinatorial Theory, Ser B 103 (2013) 504-508.
[14] C. Thomassen, Group flow, complex flow, unit vector flow, and the $(2+\epsilon)$-flow conjecture. Submitted.
[15] C. Q. Zhang, Integer flows and cycle covers of graphs. Marcel Dekker, Inc (1997).
[16] C. Q. Zhang and Cun Quan, Circular flows of nearly Eulerian graphs and vertex-splitting. J. Graph Theory 40 (2002) 147-161
[17] http : //garden.irmacs.sfu.ca/?q = op/2_epsilon_flow_conjecture. Reference posted by M. DeVoss on March 7th, 2007. Reference accessed on January 15, 2014.

[^0]: *Research partly supported by ERC Advanced Grant GRACOL

