25,049 research outputs found

    Geometric Approach to Pontryagin's Maximum Principle

    Get PDF
    Since the second half of the 20th century, Pontryagin's Maximum Principle has been widely discussed and used as a method to solve optimal control problems in medicine, robotics, finance, engineering, astronomy. Here, we focus on the proof and on the understanding of this Principle, using as much geometric ideas and geometric tools as possible. This approach provides a better and clearer understanding of the Principle and, in particular, of the role of the abnormal extremals. These extremals are interesting because they do not depend on the cost function, but only on the control system. Moreover, they were discarded as solutions until the nineties, when examples of strict abnormal optimal curves were found. In order to give a detailed exposition of the proof, the paper is mostly self\textendash{}contained, which forces us to consider different areas in mathematics such as algebra, analysis, geometry.Comment: Final version. Minors changes have been made. 56 page

    Geometric approach to sampling and communication

    Full text link
    Relationships that exist between the classical, Shannon-type, and geometric-based approaches to sampling are investigated. Some aspects of coding and communication through a Gaussian channel are considered. In particular, a constructive method to determine the quantizing dimension in Zador's theorem is provided. A geometric version of Shannon's Second Theorem is introduced. Applications to Pulse Code Modulation and Vector Quantization of Images are addressed.Comment: 19 pages, submitted for publicatio
    • …
    corecore