85,103 research outputs found

    Techniques for clustering gene expression data

    Get PDF
    Many clustering techniques have been proposed for the analysis of gene expression data obtained from microarray experiments. However, choice of suitable method(s) for a given experimental dataset is not straightforward. Common approaches do not translate well and fail to take account of the data profile. This review paper surveys state of the art applications which recognises these limitations and implements procedures to overcome them. It provides a framework for the evaluation of clustering in gene expression analyses. The nature of microarray data is discussed briefly. Selected examples are presented for the clustering methods considered

    Reverse-engineering transcriptional modules from gene expression data

    Full text link
    "Module networks" are a framework to learn gene regulatory networks from expression data using a probabilistic model in which coregulated genes share the same parameters and conditional distributions. We present a method to infer ensembles of such networks and an averaging procedure to extract the statistically most significant modules and their regulators. We show that the inferred probabilistic models extend beyond the data set used to learn the models.Comment: 5 pages REVTeX, 4 figure

    Consensus clustering and functional interpretation of gene-expression data

    Get PDF
    Microarray analysis using clustering algorithms can suffer from lack of inter-method consistency in assigning related gene-expression profiles to clusters. Obtaining a consensus set of clusters from a number of clustering methods should improve confidence in gene-expression analysis. Here we introduce consensus clustering, which provides such an advantage. When coupled with a statistically based gene functional analysis, our method allowed the identification of novel genes regulated by NFÎșB and the unfolded protein response in certain B-cell lymphomas

    M-quantile regression analysis of temporal gene expression data

    Get PDF
    In this paper, we explore the use of M-regression and M-quantile coefficients to detect statistical differences between temporal curves that belong to different experimental conditions. In particular, we consider the application of temporal gene expression data. Here, the aim is to detect genes whose temporal expression is significantly different across a number of biological conditions. We present a new method to approach this problem. Firstly, the temporal profiles of the genes are modelled by a parametric M-quantile regression model. This model is particularly appealing to small-sample gene expression data, as it is very robust against outliers and it does not make any assumption on the error distribution. Secondly, we further increase the robustness of the method by summarising the M-quantile regression models for a large range of quantile values into an M-quantile coefficient. Finally, we employ a Hotelling T2-test to detect significant differences of the temporal M-quantile profiles across conditions. Simulated data shows the increased robustness of M-quantile regression methods over standard regression methods. We conclude by using the method to detect differentially expressed genes from time-course microarray data on muscular dystrophy
    • 

    corecore