1,437,936 research outputs found

    Partition Decoupling for Multi-gene Analysis of Gene Expression Profiling Data

    Get PDF
    We present the extention and application of a new unsupervised statistical learning technique--the Partition Decoupling Method--to gene expression data. Because it has the ability to reveal non-linear and non-convex geometries present in the data, the PDM is an improvement over typical gene expression analysis algorithms, permitting a multi-gene analysis that can reveal phenotypic differences even when the individual genes do not exhibit differential expression. Here, we apply the PDM to publicly-available gene expression data sets, and demonstrate that we are able to identify cell types and treatments with higher accuracy than is obtained through other approaches. By applying it in a pathway-by-pathway fashion, we demonstrate how the PDM may be used to find sets of mechanistically-related genes that discriminate phenotypes.Comment: Revise

    Stochastic neural network models for gene regulatory networks

    Get PDF
    Recent advances in gene-expression profiling technologies provide large amounts of gene expression data. This raises the possibility for a functional understanding of genome dynamics by means of mathematical modelling. As gene expression involves intrinsic noise, stochastic models are essential for better descriptions of gene regulatory networks. However, stochastic modelling for large scale gene expression data sets is still in the very early developmental stage. In this paper we present some stochastic models by introducing stochastic processes into neural network models that can describe intermediate regulation for large scale gene networks. Poisson random variables are used to represent chance events in the processes of synthesis and degradation. For expression data with normalized concentrations, exponential or normal random variables are used to realize fluctuations. Using a network with three genes, we show how to use stochastic simulations for studying robustness and stability properties of gene expression patterns under the influence of noise, and how to use stochastic models to predict statistical distributions of expression levels in population of cells. The discussion suggest that stochastic neural network models can give better description of gene regulatory networks and provide criteria for measuring the reasonableness o mathematical models

    M-quantile regression analysis of temporal gene expression data

    Get PDF
    In this paper, we explore the use of M-regression and M-quantile coefficients to detect statistical differences between temporal curves that belong to different experimental conditions. In particular, we consider the application of temporal gene expression data. Here, the aim is to detect genes whose temporal expression is significantly different across a number of biological conditions. We present a new method to approach this problem. Firstly, the temporal profiles of the genes are modelled by a parametric M-quantile regression model. This model is particularly appealing to small-sample gene expression data, as it is very robust against outliers and it does not make any assumption on the error distribution. Secondly, we further increase the robustness of the method by summarising the M-quantile regression models for a large range of quantile values into an M-quantile coefficient. Finally, we employ a Hotelling T2-test to detect significant differences of the temporal M-quantile profiles across conditions. Simulated data shows the increased robustness of M-quantile regression methods over standard regression methods. We conclude by using the method to detect differentially expressed genes from time-course microarray data on muscular dystrophy

    Consensus clustering and functional interpretation of gene-expression data

    Get PDF
    Microarray analysis using clustering algorithms can suffer from lack of inter-method consistency in assigning related gene-expression profiles to clusters. Obtaining a consensus set of clusters from a number of clustering methods should improve confidence in gene-expression analysis. Here we introduce consensus clustering, which provides such an advantage. When coupled with a statistically based gene functional analysis, our method allowed the identification of novel genes regulated by NFκB and the unfolded protein response in certain B-cell lymphomas
    corecore