5,022 research outputs found

    Galactic Evolution of Nitrogen

    Full text link
    We present detailed spectroscopic analysis of nitrogen abundances in 31 unevolved metal-poor stars analysed by spectral synthesis of the near-UV NH band at 3360 A observed at high resolution with various telescopes. We found that [N/Fe] scales with that of iron in the metallicity range -3.1 < [Fe/H] <0 with the slope 0.01+-0.02. Furthermore, we derive uniform and accurate (N/O) ratios using oxygen abundances from near-UV OH lines obtained in our previous studies. We find that a primary component of nitrogen is required to explain the observations. The NH lines are discovered in the VLT/UVES spectra of the very metal-poor subdwarfs G64-12 and LP815-43 indicating that these stars are N rich. The results are compared with theoretical models and observations of extragalactic HII regions and Damped Lyα\alpha systems. This is the first direct comparison of the (N/O) ratios in these objects with those in Galactic stars.Comment: 10 pages, 6 figures, to appear in Astronomy and Astrophysic

    The Galactic evolution of phosphorus

    Full text link
    As a galaxy evolves, its chemical composition changes and the abundance ratios of different elements are powerful probes of the underlying evolutionary processes. Phosphorous is an element whose evolution has remained quite elusive until now, because it is difficult to detect in cool stars. The infrared weak P I lines of the multiplet 1, at 1050-1082 nm, are the most reliable indicators of the presence of phosphorus. The availability of CRIRES at VLT has permitted access to this wavelength range in stellar spectra.We attempt to measure the phosphorus abundance of twenty cool stars in the Galactic disk. The spectra are analysed with one-dimensional model-atmospheres computed in Local Thermodynamic Equilibrium (LTE). The line formation computations are performed assuming LTE. The ratio of phosphorus to iron behaves similarly to sulphur, increasing towards lower metallicity stars. Its ratio with respect to sulphur is roughly constant and slightly larger than solar, [P/S]=0.10+- 0.10. We succeed in taking an important step towards the understanding of the chemical evolution of phosphorus in the Galaxy. However, the observed rise in the P/Fe abundance ratio is steeper than predicted by Galactic chemical evolution model model developed by Kobayashi and collaborators. Phosphorus appears to evolve differently from the light odd-Z elements sodium and aluminium. The constant value of [P/S] with metallicity implies that P production is insensitive to the neutron excess, thus processes other than neutron captures operate. We suggest that proton captures on 30Si and alpha captures on $27Al are possibilities to investigate. We see no clear distinction between our results for stars with planets and stars without any detected planet.Comment: To be published on A&

    Early Galactic Evolution of Carbon, Nitrogen and Oxygen

    Get PDF
    We present results on carbon, nitrogen, and oxygen abundances for a sample of unevolved metal-poor stars with metallicities in the range -0.3< [Fe/H]< -3. Oxygen abundances derived from different indicators are compared showing consistently that in the range 0.3 >[Fe/H]>-3.0, the [O/Fe] ratio increases from approximately 0 to 1. We find a good agreement between abundances based on the forbidden line, the OH and IR triplet lines when gravities based on Hipparcos} parallaxes are considered for the sample stars. Gravities derived from LTE ionization balance in metal-poor stars with [Fe/H]< -1 are likely too low, and could be responsible for an underestimation of the oxygen abundances derived using the [OI] line. [C/Fe] and [N/Fe] ratios appear to be constant, independently of metallicity, in the same range. However, they show larger scatter than oxygen at a given metallicity, which could reflect the larger variety of stellar production sites for these other elements.Comment: 10 pages, 3 figures, To appear in the proceedings of the conference "The Chemical Evolution of The Milky Way: Stars versus Clusters", eds. F. Matteucci and F. Giovannelli, Vulcano, Italy, September 20-24 199

    On the Galactic Evolution of DD and 3He^3He

    Full text link
    The determined abundances of primordial 4He^4He and 7Li^7Li provide a basis with which to test the standard model of big bang nucleosynthesis in conjunction with the other two light element isotopes DD and 3He^3He, also produced in the big bang. Overall, consistency in the standard big bang nucleosynthesis model is best achieved for a baryon-to-photon ratio of typically 3×10103 \times 10^{-10} for which the primordial value of DD is five times greater than the present observed abundance and about three times greater than the pre-solar value. We consider various models for the chemical evolution of the Galaxy to test the feasibility for the destruction of D without the overproduction of 3He^3He and overall metallicity. Models which are capable of achieving this goal include ones with a star formation rate proportional to the gas mass fraction or an exponentially decreasing star formation rate. We discuss the effect of parameters that govern the initial mass function and of surviving fractions of 3He^3He in stars between one and three solar masses.Comment: 25 pages, LaTeX, UMN-TH-1206/9
    corecore