457,847 research outputs found
General conditioned and aimed information on fuzzy setting
In this paper our investigation on aimed information, started in 2011, will be completed on fuzzy setting. Here will be given a form of information for fuzzy setting, when it is conditioned and aimed. This information is called "general", because it is defined without using probability or fuzzy measure
Optimal Fuzzy Model Construction with Statistical Information using Genetic Algorithm
Fuzzy rule based models have a capability to approximate any continuous
function to any degree of accuracy on a compact domain. The majority of FLC
design process relies on heuristic knowledge of experience operators. In order
to make the design process automatic we present a genetic approach to learn
fuzzy rules as well as membership function parameters. Moreover, several
statistical information criteria such as the Akaike information criterion
(AIC), the Bhansali-Downham information criterion (BDIC), and the
Schwarz-Rissanen information criterion (SRIC) are used to construct optimal
fuzzy models by reducing fuzzy rules. A genetic scheme is used to design
Takagi-Sugeno-Kang (TSK) model for identification of the antecedent rule
parameters and the identification of the consequent parameters. Computer
simulations are presented confirming the performance of the constructed fuzzy
logic controller
General information conditioned by a variable event
The aim of this paper is to present, by axiomatic way, an idea about the general conditional information of a single, fixed fuzzy set when the conditioning fuzzy event is variable. The properties of this conditional information are translated in a system of functional equations. Some classes of solutions of this functional system are founded
- …
