# General conditioned and aimed information on fuzzy setting 

DORETTA VIVONA<br>"Sapienza" - University of Rome<br>Department of Basic and Applied Sciences for Engeneering via A.Scarpa n.16, 00161 ROMA ITALY<br>doretta.vivona@sbai.uniroma1.it

MARIA DIVARI<br>"Sapienza" - University of Rome<br>Department of Basic and Applied Sciences for Engeneering via A.Scarpa n.16, 00161 ROMA ITALY<br>maria.divari@alice.it


#### Abstract

In this paper our investigation on aimed information, started in 2011, will be completed on fuzzy setting. Here will be given a form of information for fuzzy sets, when it is conditioned and aimed. This information is called general, because it is defined without using probability or fuzzy measure.


Key-Words: Fuzzy sets, information, conditioning information, aimed information

## 1 Introduction

By using the concept of general information (i.e. information without probability or fuzzy measure [7, 8, 5]), the definition of conditional information [10, 11] and aimed information [12] have been introduced for crisp sets.

It is possible to move to fuzzy setting. In fact the goal of this paper is to introduce a form of general information $J$ conditioned and aimed by two different sets, independent of each other with respect to $J$ ( $J$-independence).

This measure can be useful when we want to measure information of a set of people with different levels of the same illness, treated with different dose of a medicament.

The paper is organized in the following way. Sect. 2 contains some preliminaries. In Sect. 3 in fuzzy setting will be introduced the definition of general conditional information with a given aim, by means of axioms. The properties of this information are traslated in a system of functional equations [1, 2]. In Sect. 4 the problem is solved, finding a class of solutions and a particular solution in $J$-independent case. Sect. 5 is devoted to the conclusion.

## 2 Preliminaires

Let $X$ be an abstact space and $\mathcal{F}$ the $\sigma$-algebra of all fuzzy sets of $X$, such that $(X, \mathcal{F})$ is measurable. Basic notions, notations and operation on fuzzy sets can be found in [14, 9]. Now, the definition of measure of general information for fuzzy sets is recalled [6].

Definition 1 Measure of general information $J(\cdot)$ is
a mapping $J(\cdot): \mathcal{F} \rightarrow[0,+\infty]$ such that $\forall F, F^{\prime} \in$ $\mathcal{F}$ :
$(i) F \supset F^{\prime} \rightarrow J(F) \leq J\left(F^{\prime}\right)$,
$($ ii) $J(\emptyset)=+\infty, \quad J(X)=0$.
Given a measure of general information $J$ and $K, K^{\prime} \in \mathcal{F}$ with $K \neq K^{\prime}, K \cap K^{\prime} \neq \emptyset, K$ and $K^{\prime}$ are said $J$ - independent (i.e. independent of each other with respect to $J$ ) if

$$
(i i i) J\left(K \cap K^{\prime}\right)=J(K)+J\left(K^{\prime}\right)
$$

## 3 Statement of the problem

In this paragraph will be introduced measure of general information when it is conditioned by a given event $H$ and it is aimed by a different event $S$. From now on, the following assumption is considered:

$$
\begin{gather*}
\text { let } H, S \in \mathcal{F}, \mathrm{H} \neq \mathrm{S},  \tag{1}\\
J(H) \neq+\infty, J(S) \neq+\infty,
\end{gather*}
$$

$H$ and $S$ are calling conditioning and aiming events, respectively. Now, given a conditioning and aiming sets as in (1), it is introduced the definition of general information of the set $F \in \mathcal{F}$ conditioned by $H$ with the aim $S$ : this information will be denoted by $J_{H}(F \rightarrow S)$.

Definition 2 Given $H$ and $S$ as in (1), measure of general information conditioned by $H$ with the aim $S$ is a mapping

$$
J_{H}(\cdot \rightarrow S): \mathcal{F} \rightarrow[0,+\infty]
$$

such that $\forall F, F^{\prime} \in \mathcal{F}$ :
$(l) F \supset F^{\prime} \rightarrow J_{H}(F \rightarrow S) \leq J_{H}\left(F^{\prime} \rightarrow S\right)$,
$(l l) J_{H}(\emptyset \rightarrow S)=+\infty, \quad J_{H}(X \rightarrow S)=0$.
Given a measure $J_{H}(\cdot \rightarrow S)$ as in Def.3, $K, K^{\prime} \in$ $\mathcal{F}$ with $K \neq K^{\prime}, K \cap K^{\prime} \neq \emptyset, K$ and $K^{\prime}$ are said $J-$ conditional independent with the aim $S$ (i.e. independent of each other with respect to $J$ conditioned by $H$ with the aim $S$ ) if

$$
\begin{gathered}
(l l l) J_{H}\left(\left(K \cap K^{\prime}\right) \rightarrow S\right)= \\
J_{H}(K \rightarrow S)+J_{H}\left(K^{\prime} \rightarrow S\right)
\end{gathered}
$$

### 3.1 The function $\Phi$

With the assumption (1), our study considers that measure $J_{H}(\cdot \rightarrow S)$ of $F \in \mathcal{F}$ depends on $J(F), J(H), J(S), J(F \cap H), J(F \cap S)$. So, one will find a function $\Phi$ such that:

$$
\begin{gather*}
J_{H}(F \rightarrow S)=  \tag{2}\\
\Phi(J(F), J(H), J(S), J(F \cap H), J(F \cap S)),
\end{gather*}
$$

with $\Phi: T \rightarrow[0,+\infty]$ and $T$ will be specified later. Putting: $x=J(F), y=J(H), z=J(S), u=J(F \cap$ $H), v=J(F \cap S)$, with $x, u, v \in[0,+\infty], y, z \in$ $[0,+\infty), x \leq u, y \leq u, x \leq v, z \leq v$, from (2) it is

$$
\begin{equation*}
J_{H}(F \rightarrow S)=\Phi(x, y, z, u, v) \tag{3}
\end{equation*}
$$

and $T=\{(x, y, z, u, v) / x, u, v \in[0,+\infty], y, z \in$ $[0,+\infty), x \leq u, y \leq u, x \leq v, z \leq v\}$.

Moreover, setting $x^{\prime}=J\left(F^{\prime}\right), u^{\prime}=J\left(F^{\prime} \cap\right.$ $H), v^{\prime}=J\left(F^{\prime} \cap S\right)$, with $x^{\prime}, u^{\prime}, v^{\prime} \in[0,+\infty], x^{\prime} \leq$ $u^{\prime}, x^{\prime} \leq v^{\prime}$, the properties $[(l)-(l l)]$ of $J_{H}(\cdot \rightarrow S)$ are traslated in the following system of functional equations:

$$
\left\{\begin{array}{l}
\left(e_{1}\right) \Phi(x, y, z, u, v) \leq \Phi\left(x^{\prime}, y, z, u^{\prime}, v^{\prime}\right) \\
\text { if } x \leq x^{\prime}, u \leq u^{\prime}, v \leq v^{\prime} \\
\left(e_{2}\right) \Phi(+\infty, y, z,+\infty,+\infty)=+\infty \\
\left(e_{3}\right) \Phi(0, y, z, y, z)=0
\end{array}\right.
$$

## 4 Solution of the problem

### 4.1 General case

For the system $\left[\left(e_{1}\right)-\left(e_{3}\right)\right]$ it is
Proposition 3 A class of solution of the system $\left[\left(e_{1}\right)-\left(e_{3}\right)\right]$ is

$$
\begin{gather*}
\Phi_{h}(x, y, z, u, v)=  \tag{4}\\
h^{-1}(h(x)-h(y)-h(z)+h(u)+h(v))
\end{gather*}
$$

where $h$ is any continuous, strictly increasing function $h:[0,+\infty] \rightarrow[0,+\infty]$ with $h(0)=0, h(+\infty)=$ $+\infty$.

Proof: The prof follows easily from the properties of the function $h$.

From (3) and (4), given $H$ and $S$ as in (1), measure of general information of any fuzzy set $F$ conditioned by $H$ with the aim $S$ is

$$
\begin{equation*}
J_{H}(F \rightarrow S)=h^{-1}(h(J(F))-h(J(H))- \tag{5}
\end{equation*}
$$

$$
h(J(S))+h(J(F \cap H)+h(J(F \cap S))
$$

where $h$ is any continuous, strictly increasing function $h:[0,+\infty] \rightarrow[0,+\infty]$ with $h(0)=0, h(+\infty)=$ $+\infty$.

## 4.2 $J$-independence

In the case of $J$-independence the system $\left[\left(e_{1}\right)-\right.$ $\left.\left(e_{3}\right)\right]$ must be completed with an extra equation deduced by the property ( $l l l$ ) :
$\left(e_{4}\right) \Phi\left(t+t^{\prime}, y, z, t+t^{\prime}+y, t+t^{\prime}+z\right)=$ $\Phi(t, y, z, t+y, t+z)+\Phi\left(t^{\prime}, y, z, t^{\prime}+y, t^{\prime}+z\right)$,
where $t=J(K), t^{\prime}=J\left(K^{\prime}\right), t, t^{\prime} \in[0,+\infty]$.
Among all $h$ of the Proposition 3, only differentiable functions are considered. Here it is used the same procedure of [13].

The equation $\left[\left(e_{4}\right)\right]$ is

$$
\begin{aligned}
& h^{-1}\left(h\left(t+t^{\prime}\right)-h(y)-h(z)+h\left(t+t^{\prime}+y\right)+h\left(t+t^{\prime}+z\right)\right) \\
& =h^{-1}(h(t)-h(y)-h(z)+h(t+y)+h(t+z))+ \\
& h^{-1}\left(h\left(t^{\prime}\right)-h(y)-h(z)+h\left(t^{\prime}+y\right)+h\left(t^{\prime}+z\right)\right) .
\end{aligned}
$$

Now, the function $h$ will be characterized.
Putting $y=z$,

$$
\begin{aligned}
& h\left(h\left(t+t^{\prime}\right)-h(y)-h(y)+h\left(t+t^{\prime}+y\right)+h\left(t+t^{\prime}+y\right)\right) \\
& =h^{-1}(h(t)-h(y)-h(y)+h(t+y)+h(t+y))+ \\
& h^{-1}\left(h\left(t^{\prime}\right)-h(y)-h(y)+h\left(t^{\prime}+y\right)+h\left(t^{\prime}+y\right)\right),
\end{aligned}
$$

i.e. it is

$$
\begin{gather*}
h^{-1}\left(2 h\left(t+t^{\prime}+y\right)+h(t+t)-2 h(y)\right)=  \tag{6}\\
h^{-1}(2 h(t+y)+h(t)-2 h(y))+ \\
h^{-1}\left(2 h\left(t^{\prime}+y\right)+h\left(t^{\prime}\right)-2 h(y)\right) .
\end{gather*}
$$

Setting

$$
\begin{equation*}
\varphi(t, y)=h^{-1}(2 h(t+y)+h(t)-2 h(y)) \tag{7}
\end{equation*}
$$

the equation (6) becomes

$$
\begin{equation*}
\varphi\left(t+t^{\prime}, y\right)=\varphi(t, y)+\varphi\left(t^{\prime}, y\right) \tag{8}
\end{equation*}
$$

Fixed $y=y^{*}$, the (8) is the classical Cauchy equation [1], whose solution is the continuous function $\varphi$ :

$$
\begin{equation*}
\varphi\left(t, y^{*}\right)=\lambda\left(y^{*}\right) t \tag{9}
\end{equation*}
$$

So, from (7),

$$
\lambda\left(y^{*}\right) t=h^{-1}\left(2 h\left(t+y^{*}\right)+h(t)-2 h\left(y^{*}\right)\right) \quad \text { i.e. }
$$

$$
\begin{equation*}
h\left(\lambda\left(y^{*}\right) t\right)=2 h\left(t+y^{*}\right)+h(t)-2 h\left(y^{*}\right) \tag{10}
\end{equation*}
$$

If $y^{*}=0$, as $h(0)=0$, from (10), one has

$$
\begin{gather*}
h(\lambda(0) t)=2 h(t)+h(t), \quad i . e . \\
h(\lambda(0) t)=3 h(t) . \tag{11}
\end{gather*}
$$

Taking inspiration by $[1,2,3,4]$ one will prove that

$$
\begin{equation*}
h(\lambda(0) t)=3 h(t) \Longrightarrow \lambda(0)=3 \tag{12}
\end{equation*}
$$

Set $\lambda(0)=c$, from (11), one will solve the equation

$$
\begin{equation*}
h(c t)=3 h(t) \tag{13}
\end{equation*}
$$

by differentiating $c h^{\prime}(c t)=3 h^{\prime}(t)$ from which

$$
\begin{equation*}
\frac{c h^{\prime}(c t)}{h(c t)}=\frac{h^{\prime}(t)}{h(t)} \tag{14}
\end{equation*}
$$

Setting

$$
\begin{equation*}
v(t)=\frac{h^{\prime}(t)}{h(t)} \tag{15}
\end{equation*}
$$

the (14) is

$$
\begin{equation*}
v(c t)=\frac{v(t)}{c}, \quad \forall t \tag{16}
\end{equation*}
$$

The function $v(t)=\frac{1}{t}$ is the unique solution admitting a Laurent expansion about 0 . By substituing in (15), one obtain the equation

$$
\begin{equation*}
\frac{h^{\prime}(t)}{h(t)}=\frac{1}{t} \tag{17}
\end{equation*}
$$

whose solution is

$$
\begin{equation*}
h(t)=k t, t \in[0,+\infty], k>0 \tag{18}
\end{equation*}
$$

By substituing (18) in (13), it is $c=\lambda(0)=3$. So, the function $h$ satisfies the following condition:

$$
\begin{equation*}
h(3 t)=3 h(t) . \tag{19}
\end{equation*}
$$

From (10),

$$
\varphi(x, t)=3 t=h^{-1}(2 h(t+y)+h(t)-2 h(y))
$$

$$
\text { i.e. } h(3 t)=2 h(t+y)+h(t)-2 h(y),
$$

taking into account (19), it is

$$
\begin{gathered}
3 h(t)=2 h(t+y)-2 h(y)+h(t) \\
i . e . \quad h(t)+h(y)=h(t+y)
\end{gathered}
$$

which is the classical Cauchy equation [1], whose solution is

$$
\begin{equation*}
h(x)=c x, c>0 \tag{20}
\end{equation*}
$$

Now, it is possible to give the following
Proposition 4 The solution of the system $\left[\left(e_{1}\right)-\left(e_{4}\right)\right]$ is

$$
\begin{equation*}
\Phi(x, y, z, u, v)=x-y-z+u+v \tag{21}
\end{equation*}
$$

Proof: It is easy to check that (21) holds, by applying (20) in the (4).

In the independent case, given $H$ and $S$ as in (1), from (21), information of any set $A \in \mathcal{A}$ conditioned by $H$ with the aim $S$ is

$$
\begin{gather*}
J_{H}(A \rightarrow S)=J(A)-J(H)-J(S)+  \tag{22}\\
J(A \cap H)+J(A \cap S) .
\end{gather*}
$$

## 5 Conclusion

First, by axiomatic way, it has been defined general conditional information with an aim, on fuzy setting. By using its properties, it has been possible to find a class of this measure (5).

Then, taking into account the $J$-independence property, it has been obtained a particular measure (22).

Acknowledgements: This research was supported by research centre CRITEVAT of "Sapienza" Unicersity of Roma (Italy) and GNFMof MIUR (Italy).

## References:

[1] J. Aczél, Lectures on Functional Equations and their Applications, Academic Press, New Jork 1969.
[2] J. Aczél, On Applicatios and Theory of Functional Equations, Birka̋user Verlag, Basel 1969.
[3] J. Aczél and Z. Daróczy, On Measures of Information and Their Characterization, Academic Press, New Jork 1975.
[4] J. Aczél and J.G. Dhombres, Functional Equations in several variables, Cambridge University Press 1989.
[5] P. Benvenuti, L’opera scientifica, Ed.Univ.La Sapienza, Roma - Italia 2004.
[6] P. Benvenuti, D. Vivona and M. Divari, A General Information for Fuzzy Sets, Uncertainty in Knowledge Bases, Lectures Notes in Computer Sciences, 521, 1990, pp.307-316, http://dx.doi.org/10.1007/BFb0028117.
[7] B.Forte, Measure of information. The general axiomatic theory, R.I.R.O., 1969, pp.63-90
[8] J. Kampé De Fériet and B. Forte, Information et Probabilité, C.R.Acad.Sc.Paris, 265, 1967, pp. 110-114, 142-146, 350-353.
[9] G.J. Klir and T.A. Folger, Fuzzy Sets, Uncertainty and Information, Prentice-Hall International Editios, Englewood Cliffs, 1988.
[10] D. Vivona and M. Divari, On a conditional information for fuzzy sets, Proc. AGOP05, 2005, pp. 147-149.
[11] D. Vivona and M. Divari, Aggregation operators for conditional information without probability, Proc.IPMU08, 2008, pp.258-260.
[12] D. Vivona and M. Divari, Aggregation operators of general aimed information, Proc.EUSFLATLFA 2011, 2011, pp.75-78.
[13] D. Vivona and M. Divari, General conditional information with an aim, Proc.8th ASM'14, 2014, pp.96-100.
[14] L.A. Zadeh, Fuzzy Sets, Information and Control, 1965, 8, pp.338-353.

