95,086 research outputs found

    Textiles as Material Gestalt: Cloth as a Catalyst in the Co-designing Process

    Get PDF
    Textiles is the common language within Emotional Fit, a collaborative research project investigating a person-centred, sustainable approach to fashion for an ageing female demographic (55+). Through the co-designing of a collection of research tools, textiles have acted as a material gestalt for exploring our research participants' identities by tracing their embodied knowledge of fashionable dress. The methodology merges Interpretative Phenomenological Analysis, co-design and a simultaneous approach to textile and garment design. Based on an enhanced understanding of our participants textile preferences, particular fabric qualities have catalysed silhouettes, through live draping and geometric pattern cutting to accommodate multiple body shapes and customisation. Printedtextiles have also been digitally crafted in response to the contours of the garment and body and personal narratives of wear. Sensorial and tactile interactions have informed the engineering and scaling of patterns within zero-waste volumes. The article considers the functional and aesthetic role of textiles

    Polyester textile functionalization through incorporation of pH/thermo-responsive microgels. Part II: polyester functionalization and characterization

    Get PDF
    A new approach to functionalize the surface of polyester textiles is described in this study. Functionalization was achieved by incorporating pH/temperature-responsive polyelectrolyte microgels into the textile surface layer using UV irradiation. The aim of functionalization was to regulate polyester wettability according to ambient conditions by imparting stimuli-responsiveness from the microgel to the textile itself. Microgels consisted of pH/thermo-responsive microparticles of poly(N-isopropylacrylamide-co-acrylic acid) either alone or complexed with the pH-responsive natural polysaccharide chitosan. Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy, ζ-potential measurements, and topographical analysis were used for surface characterization. Wettability of polyester textiles was assessed by dynamic wetting, water vapor transfer, and moisture regain measurements. One of the main findings showed that the polyester surface was rendered pH-responsive, both in acidic and alkaline pH region, owing to the microgel incorporation. With a marked relaxation in their structure and an increase in their microporosity, the functionalized textiles exhibited higher water vapor transfer rates both at 20 and 40 °C, and 65% relative humidity compared with the reference polyester. Also, at 40 °C, i.e., above the microgel Lower Critical Solution Temperature, the functionalized polyester textiles had lower moisture regains than the reference. Finally, the type of the incorporated microgel affected significantly the polyester total absorption times, with an up to 300% increase in one case and an up to 80% decrease in another case. These findings are promising for the development of functional textile materials with possible applications in biotechnology, technical, and protective clothin

    Generating electricity with decorative glazing

    Get PDF
    Dorothy Hardy, research fellow in manufacturing of functional electronic textiles in the Advanced Textiles Research Group at Nottingham Trent University, explains how using solar cells in glazing designs can generate electricity

    Functionalisation of textiles: future perspectives

    Get PDF
    Multifunctional effects are essential for producing higher value added textiles, important not only for new technical applications but also for more “traditional” uses such as clothing and home textiles with high product differentiation. Within the “European Technology Platform for the Future of Textiles and Clothing”, functional textiles are a clear priority. Surface modification by means of finishing is very versatile and allows a large number of effects. The developments of new functional effects also lead to the need of the development of specific test methods that are able to measure the effectiveness, durability and toxicity of the claimed functionalities. The technical committee for “textiles and textile products” of the European Standardisation is now devoting special attention to this subject

    Bioengineered Textiles and Nonwovens – the convergence of bio-miniaturisation and electroactive conductive polymers for assistive healthcare, portable power and design-led wearable technology

    Get PDF
    Today, there is an opportunity to bring together creative design activities to exploit the responsive and adaptive ‘smart’ materials that are a result of rapid development in electro, photo active polymers or OFEDs (organic thin film electronic devices), bio-responsive hydrogels, integrated into MEMS/NEMS devices and systems respectively. Some of these integrated systems are summarised in this paper, highlighting their use to create enhanced functionality in textiles, fabrics and non-woven large area thin films. By understanding the characteristics and properties of OFEDs and bio polymers and how they can be transformed into implementable physical forms, innovative products and services can be developed, with wide implications. The paper outlines some of these opportunities and applications, in particular, an ambient living platform, dealing with human centred needs, of people at work, people at home and people at play. The innovative design affords the accelerated development of intelligent materials (interactive, responsive and adaptive) for a new product & service design landscape, encompassing assistive healthcare (smart bandages and digital theranostics), ambient living, renewable energy (organic PV and solar textiles), interactive consumer products, interactive personal & beauty care (e-Scent) and a more intelligent built environment

    Ghent University-Department of Textiles: annual report 2013

    Get PDF

    ENMat international projects: FP7 NMP coordination action: 2BFUNTEX

    Get PDF
    Boosting collaboration between research centres and industry to enhance rapid industrial uptake of innovative functional textile structures and textile-related materials in a mondial market 2BFUNTEX will exploit the untapped potential in functional textile structures and textile related materials. It will bring together all innovation actors in the field fostering a multidisciplinary approach between universities, research institutes, SMEs and sector associations. The 2BFUNTEX team will identify technological gaps and eliminate barriers resulting in a faster industrial uptake of added value functional materials with new functionalities and improved performance and resulting in creation of new business worldwide. Technological needs will be mapped, new joint international research disciplines will be identified and multidisciplinary lab teams will be created. International cooperation will be favoured to exploit the worldwide market expansion potential. Industry will be involved at all stages of the process. The inventory will enlarge the team of important textile universities and renowned materials research centres and will identify new collaborations. Synergy will be reinforced and created which will enable to identify and develop new functional materials. Training materials regarding functional materials for research and industrial purposes will be developed and implemented to allow a common language regarding functional textile structures and text ile related materials, and will increase the number of well-trained people in this field. Further, the 2BFUNTEX partners will organise and participate in conferences, workshops and brokerage events. Along with a website with an extensive database comprising all information gained throughout the project, collaboration will be boosted and rapid industrial uptake catalysed and enhanced. The project duration will be 4 years and the consortium includes 26 partners from 16 countries. Start date : 01/01/2012 More information: Ir. Els Van der Burght Department of Textiles/Ghent University [email protected] [email protected] URL: http://www.2bfuntex.e

    A review of contemporary techniques for measuring ergonomic wear comfort of protective and sport clothing

    Get PDF
    Protective and sport clothing is governed by protection requirements, performance, and comfort of the user. The comfort and impact performance of protective and sport clothing are typically subjectively measured, and this is a multifactorial and dynamic process. The aim of this review paper is to review the contemporary methodologies and approaches for measuring ergonomic wear comfort, including objective and subjective techniques. Special emphasis is given to the discussion of different methods, such as objective techniques, subjective techniques, and a combination of techniques, as well as a new biomechanical approach called modeling of skin. Literature indicates that there are four main techniques to measure wear comfort: subjective evaluation, objective measurements, a combination of subjective and objective techniques, and computer modeling of human–textile interaction. In objective measurement methods, the repeatability of results is excellent, and quantified results are obtained, but in some cases, such quantified results are quite different from the real perception of human comfort. Studies indicate that subjective analysis of comfort is less reliable than objective analysis because human subjects vary among themselves. Therefore, it can be concluded that a combination of objective and subjective measuring techniques could be the valid approach to model the comfort of textile materials
    corecore