65,622 research outputs found

    Interval Slopes as Numerical Abstract Domain for Floating-Point Variables

    Full text link
    The design of embedded control systems is mainly done with model-based tools such as Matlab/Simulink. Numerical simulation is the central technique of development and verification of such tools. Floating-point arithmetic, that is well-known to only provide approximated results, is omnipresent in this activity. In order to validate the behaviors of numerical simulations using abstract interpretation-based static analysis, we present, theoretically and with experiments, a new partially relational abstract domain dedicated to floating-point variables. It comes from interval expansion of non-linear functions using slopes and it is able to mimic all the behaviors of the floating-point arithmetic. Hence it is adapted to prove the absence of run-time errors or to analyze the numerical precision of embedded control systems

    An 826 MOPS, 210 uW/MHz Unum ALU in 65 nm

    Full text link
    To overcome the limitations of conventional floating-point number formats, an interval arithmetic and variable-width storage format called universal number (unum) has been recently introduced. This paper presents the first (to the best of our knowledge) silicon implementation measurements of an application-specific integrated circuit (ASIC) for unum floating-point arithmetic. The designed chip includes a 128-bit wide unum arithmetic unit to execute additions and subtractions, while also supporting lossless (for intermediate results) and lossy (for external data movements) compression units to exploit the memory usage reduction potential of the unum format. Our chip, fabricated in a 65 nm CMOS process, achieves a maximum clock frequency of 413 MHz at 1.2 V with an average measured power of 210 uW/MHz

    Optimal Controller and Filter Realisations using Finite-precision, Floating- point Arithmetic.

    Get PDF
    The problem of reducing the fragility of digital controllers and filters implemented using finite-precision, floating-point arithmetic is considered. Floating-point arithmetic parameter uncertainty is multiplicative, unlike parameter uncertainty resulting from fixed-point arithmetic. Based on first- order eigenvalue sensitivity analysis, an upper bound on the eigenvalue perturbations is derived. Consequently, open-loop and closed-loop eigenvalue sensitivity measures are proposed. These measures are dependent upon the filter/ controller realization. Problems of obtaining the optimal realization with respect to both the open-loop and the closed-loop eigenvalue sensitivity measures are posed. The problem for the open-loop case is completely solved. Solutions for the closed-loop case are obtained using non-linear programming. The problems are illustrated with a numerical example

    Hardware math for the 6502 microprocessor

    Get PDF
    A floating-point arithmetic unit is described which is being used in the Ground Facility of Large Space Structures Control Verification (GF/LSSCV). The experiment uses two complete inertial measurement units and a set of three gimbal torquers in a closed loop to control the structural vibrations in a flexible test article (beam). A 6502 (8-bit) microprocessor controls four AMD 9511A floating-point arithmetic units to do all the computation in 20 milliseconds

    Stochastic rounding and reduced-precision fixed-point arithmetic for solving neural ordinary differential equations

    Get PDF
    Although double-precision floating-point arithmetic currently dominates high-performance computing, there is increasing interest in smaller and simpler arithmetic types. The main reasons are potential improvements in energy efficiency and memory footprint and bandwidth. However, simply switching to lower-precision types typically results in increased numerical errors. We investigate approaches to improving the accuracy of reduced-precision fixed-point arithmetic types, using examples in an important domain for numerical computation in neuroscience: the solution of Ordinary Differential Equations (ODEs). The Izhikevich neuron model is used to demonstrate that rounding has an important role in producing accurate spike timings from explicit ODE solution algorithms. In particular, fixed-point arithmetic with stochastic rounding consistently results in smaller errors compared to single precision floating-point and fixed-point arithmetic with round-to-nearest across a range of neuron behaviours and ODE solvers. A computationally much cheaper alternative is also investigated, inspired by the concept of dither that is a widely understood mechanism for providing resolution below the least significant bit (LSB) in digital signal processing. These results will have implications for the solution of ODEs in other subject areas, and should also be directly relevant to the huge range of practical problems that are represented by Partial Differential Equations (PDEs).Comment: Submitted to Philosophical Transactions of the Royal Society
    corecore