635,111 research outputs found
H ? filtering for stochastic singular fuzzy systems with time-varying delay
This paper considers the H? filtering problem
for stochastic singular fuzzy systems with timevarying
delay. We assume that the state and measurement
are corrupted by stochastic uncertain exogenous
disturbance and that the system dynamic is modeled
by Ito-type stochastic differential equations. Based on
an auxiliary vector and an integral inequality, a set of
delay-dependent sufficient conditions is established,
which ensures that the filtering error system is e?t -
weighted integral input-to-state stable in mean (iISSiM).
A fuzzy filter is designed such that the filtering
error system is impulse-free, e?t -weighted iISSiM and
the H? attenuation level from disturbance to estimation
error is belowa prescribed scalar.Aset of sufficient
conditions for the solvability of the H? filtering problem
is obtained in terms of a new type of Lyapunov
function and a set of linear matrix inequalities. Simulation
examples are provided to illustrate the effectiveness
of the proposed filtering approach developed in
this paper
Mixed H2/H∞ filtering for uncertain systems with regional pole assignment
Copyright [2005] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.The mixed H2/H∞ filtering problem for uncertain linear continuous-time systems with regional pole assignment is considered. The purpose of the problem is to design an uncertainty-independent filter such that, for all admissible parameter uncertainties, the following filtering requirements are simultaneously satisfied: 1) the filtering process is asymptotically stable; 2) the poles of the filtering matrix are located inside a prescribed region that compasses the vertical strips, horizontal strips, disks, or conic sectors; 3) both the H2 norm and the H∞ norm on the respective transfer functions are not more than the specified upper bound constraints. We establish a general framework to solve the addressed multiobjective filtering problem completely. In particular, we derive necessary and sufficient conditions for the solvability of the problem in terms of a set of feasible linear matrix inequalities (LMIs). An illustrative example is given to illustrate the design procedures and performances of the proposed method
Robust variance-constrained filtering for a class of nonlinear stochastic systems with missing measurements
The official published version of the article can be found at the link below.This paper is concerned with the robust filtering problem for a class of nonlinear stochastic systems with missing measurements and parameter uncertainties. The missing measurements are described by a binary switching sequence satisfying a conditional probability distribution, and the nonlinearities are expressed by the statistical means. The purpose of the filtering problem is to design a filter such that, for all admissible uncertainties and possible measurements missing, the dynamics of the filtering error is exponentially mean-square stable, and the individual steady-state error variance is not more than prescribed upper bound. A sufficient condition for the exponential mean-square stability of the filtering error system is first derived and an upper bound of the state estimation error variance is then obtained. In terms of certain linear matrix inequalities (LMIs), the solvability of the addressed problem is discussed and the explicit expression of the desired filters is also parameterized. Finally, a simulation example is provided to demonstrate the effectiveness and applicability of the proposed design approach.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK and the Alexander von Humboldt Foundation of Germany
Cross sectional efficient estimation of stochastic volatility short rate models
We consider the problem of estimation of term structure of interest rates. Filtering theory approach is very natural here with the underlying setup being non-linear and non-Gaussian. Earlier works make use of Extended Kalman Filter (EKF). However, the EKF in this situation leads to inconsistent estimation of parameters, though without high bias. One way to avoid this is to use methods like Efficient Method of Moments or Indirect Inference Method. These methods, however, are numerically very demanding. We use Kitagawa type scheme for nonlinear filtering problem, which solves the inconsistency problem without being numerically so demanding. \u
- …
