418,299 research outputs found

    Adaptive and Robust Fault-Tolerant Tracking Control of Contact force of Pantograph-Catenary for High-Speed Trains

    Get PDF
    Abstract This paper presents a modified multi-body dynamic model and a linear time-invariant model with actuator faults (loss of effectiveness faults, bias faults) and matched and unmatched uncertainties. Based on the fault model, a class of adaptive and robust tracking controllers are proposed which are adjusted online to tolerate the time-varying loss of effectiveness faults and bias faults, and compensate matched disturbances without the knowledge of bounds. For unmatched uncertainties, optimal control theory is added to the controller design processes. Simulations on a pantograph are shown to verify the efficiency of the proposed fault-tolerant design approach

    A 22n March Test for Realistic Static Linked Faults in SRAMs

    Get PDF
    Linked faults are considered an interesting class of memory faults. Their capability of influencing the behavior of other faults causes the hiding of the fault effect and makes test algorithm design a very complex task. Although several March tests have been developed for the wide memory faults spread, a few of them are able to detect linked faults. In the present paper March AB, a March test targeting the set of realistic memory linked fault is presented. Comparison results show that the proposed March test provides the same fault coverage of already published algorithms but, it reduces the test complexity and therefore the test time. Moreover, a complete taxonomy of linked faults will be presente

    Fault slip-rate variations during crustal-scale strain localisation, central Italy

    Get PDF
    Rates of plate motion are generally uniform over 10–102 Myrs timescales. Faults between tectonic plates might, therefore, be expected to show temporally-uniform slip-rates if the same number of faults remain active. For an extending region of the Eurasia-Africa plate boundary, Italy, finite throw values (vertical component of the slip) for seismogenic normal faults are less than that predicted when recent throw-rates are extrapolated over the fault lifetimes. The effect correlates with distance from the fault system tips and demonstrates that the slip-rates on centrally-located faults have increased with time. Neighbouring normal faults were active in the Quaternary but show no signs of surface faulting during the latest Pleistocene to Holocene. Death of these faults has provided the extra strain per unit time to drive the increased slip-rates measured on other faults. Thus, fault interaction and death modify slip-rates and seismic hazards associated with plate tectonics

    The structure and composition of exhumed faults, and their implications for seismic processes

    Get PDF
    Field studies of faults exhumed from seismogenic depths provide useful data to constrain seismologic models of fault zone processes and properties. Data collected on the San Andreas Fault in the San Gabriel Mountains has shown that large-displacement faults consist of one to several very narrow slip zones embedded in a cataclastically deformed sheared region several meters thick. However these faults have not been buried to depths greater than 5 km. Fault zones in the Sierra Nevada, California allow us to study the microstructures resulting from the deformation mechanisms active at seismogenic depths. Syn-fault mineralization shows that these left-lateral strike-slip faults formed at 5-12 km depth. Detailed microstructural analyses of the small faults reveal that they evolved from cooling joints filled by chlorite, epidote and quartz. These joints were then reactivated to form shear faults with accompanying brittle fracture and cataclastic deformation, ultimately developing very fined-grained cataclasites and ultracataclasites. The shear-induced microstructures are developed on faults with as little as several mm of slip showing that narrow slip-surfaces develop early in the lifetime of these faults. Subsequent slip has little effect on the microstructures. The inferred similarity of deformation mechanisms in faults 10 m to 10 km long indicates that basic slip processes on the faults are scale invariant, and may be a cause for the inferred constant b-value for small earthquakes. Analysis of map-scale fault linkages and terminations indicate that linkage zones are up to 400 m wide and 1 km long, and consist of altered and fractured rocks with numerous through-going slip surfaces. Terminations are regions of numerous splay faults that have cumulative offsets approaching those of the main faults. The slip distribution and structure of the terminations and linkage zones suggest that seismic slip may propagate into these zones of enhanced toughness, and that through-going slip can occur when a sufficient linkage of faults in the zone allow slip to be transmitted

    Automatic March tests generation for static and dynamic faults in SRAMs

    Get PDF
    New memory production modern technologies introduce new classes of faults usually referred to as dynamic memory faults. Although some hand-made March tests to deal with these new faults have been published, the problem of automatically generate March tests for dynamic faults has still to be addressed, in this paper we propose a new approach to automatically generate March tests with minimal length for both static and dynamic faults. The proposed approach resorts to a formal model to represent faulty behaviors in a memory and to simplify the generation of the corresponding tests

    Fault activity studies in the Lower Tagus valley and Lisbon region using geophysical data

    Get PDF
    he Metropolitan Area of Lisbon and the Lower Tagus Valley (LTV) region are located in central Portugal and inhabited by nearly 4 million people. The region has suffered throughout its history the effect of destructive earthquakes caused by hidden faults, possibly related to the plate boundary, which is sited approximately 400 km south of the region (Figure 1). In spite of low slip-rates and big recurrence times that have been estimated for these local, regional faults, they can produce moderate-to-large earthquakes that cause large damage and loss of life, as in 1344, 1531, or 1909 (e.g. Justo and Salwa, 1998; Cabral et al., 2003; 2013). The shorter occurrence time of the earthquakes might be owing to the existence of multiple active faults and/or time clustering owing to stress drop caused by proximal faults (e.g. Carvalho et al., 2006). Therefore, the seismic hazard and risk evaluation of the region has long been a reason of concern. Geological outcrop and geomorphologic mapping identified several regional faults in the LTV region that could be the source the historical earthquakes, but some of them do not affect. Quaternary sediments and lacked the proofs that they were active faults. On the other side, in the vast quaternary alluvial plains that cover the region, it was difficult to identify active faults, as the sedimentation/erosion rates erase any possible surface rupture caused by the low slip-rate faults (<0,35 mm/y). By the late-20th century, seismic reflection data that had been acquired for the oil-industry till the beginning of the 1980s began to be used to identify the major hidden fault zones (e.g. Cabral et al., 2003; Vilanova and Fonseca, 2004; Carvalho et al., 2006). Potential field data was also used to locate active faults in the areas where no seismic data is available (Carvalho et al., 2008; 2011). Though a few more active faults have been proposed, the vast majority of authors agree that the following active faults threaten the region: NazarĂ©-Caldas da Rainha, Lower Tagus Valley, Ota, Azambuja, Vila Franca de Xira (VFX), Pinhal Novo and Porto Alto faults (Garcia-Mayordomo et al., 2012; Vilanova et al., 2014). In this work, we discuss the acquisition, processing and interpretation of near surface geophysical works carried out over three of these faults — the VFX, Porto Alto and Azambuja faults — in order to confirm they have had activity during the Holoceneera. Their location is shown in Figure 2. We further estimate some of its fault parameters (vertical displacement, slip-rate, length, etc.) and respective implications in terms of seismic hazard

    The GTZAN dataset: Its contents, its faults, their effects on evaluation, and its future use

    Get PDF
    The GTZAN dataset appears in at least 100 published works, and is the most-used public dataset for evaluation in machine listening research for music genre recognition (MGR). Our recent work, however, shows GTZAN has several faults (repetitions, mislabelings, and distortions), which challenge the interpretability of any result derived using it. In this article, we disprove the claims that all MGR systems are affected in the same ways by these faults, and that the performances of MGR systems in GTZAN are still meaningfully comparable since they all face the same faults. We identify and analyze the contents of GTZAN, and provide a catalog of its faults. We review how GTZAN has been used in MGR research, and find few indications that its faults have been known and considered. Finally, we rigorously study the effects of its faults on evaluating five different MGR systems. The lesson is not to banish GTZAN, but to use it with consideration of its contents.Comment: 29 pages, 7 figures, 6 tables, 128 reference
    • 

    corecore