990 research outputs found

    Design and Validation of a MR-compatible Pneumatic Manipulandum

    Get PDF
    The combination of functional MR imaging and novel robotic tools may provide unique opportunities to probe the neural systems underlying motor control and learning. Here, we describe the design and validation of a MR-compatible, 1 degree-of-freedom pneumatic manipulandum along with experiments demonstrating its safety and efficacy. We first validated the robot\u27s ability to apply computer-controlled loads about the wrist, demonstrating that it possesses sufficient bandwidth to simulate torsional spring-like loads during point-to-point flexion movements. Next, we verified the MR-compatibility of the device by imaging a head phantom during robot operation. We observed no systematic differences in two measures of MRI signal quality (signal/noise and field homogeneity) when the robot was introduced into the scanner environment. Likewise, measurements of joint angle and actuator pressure were not adversely affected by scanning. Finally, we verified device efficacy by scanning 20 healthy human subjects performing rapid wrist flexions against a wide range of spring-like loads. We observed a linear relationship between joint torque at peak movement extent and perturbation magnitude, thus demonstrating the robot\u27s ability to simulate spring-like loads in situ. fMRI revealed task-related activation in regions known to contribute to the control of movement including the left primary sensorimotor cortex and right cerebellum

    F2move: fMRI-compatible haptic object manipulation system for closed-loop motor control studies

    No full text
    Functional neuroimaging plays a key role in addressing open questions in systems and motor neuroscience directly applicable to brain machine interfaces. Building on our low-cost motion capture technology (fMOVE), we developed f2MOVE, an fMRI-compatible system for 6DOF goal-directed hand and wrist movements of human subjects enabling closed-loop sensorimotor haptic experiments with simultaneous neuroimaging. f2MOVE uses a high-zoom lens high frame rate camera and a motion tracking algorithm that tracks in real-time the position of special markers attached to a hand-held object in a novel customized haptic interface. The system operates with high update rate (120 Hz) and sufficiently low time delays (<; 20 ms) to enable visual feedback while complex, goal-oriented movements are recorded. We present here both the accuracy of our motion tracking against a reference signal and the efficacy of the system to evoke motor control specific brain activations in healthy subjects. Our technology and approach thus support the real-time, closed-loop study of the neural foundations of complex haptic motor tasks using neuroimaging

    The mind-body problem; three equations and one solution represented by immaterial-material data

    Get PDF
    Human life occurs within a complex bio-psycho-social milieu, a heterogeneous system that is integrated by multiple bidirectional interrelations existing between the abstract-intangible ideas and physical-chemical support of environment. The mind is thus placed between the abstract ideas/ concepts and neurobiological brain that is further connected to environment. In other words, the mind acts as an interface between the immaterial (abstract/ intangible) data and material (biological) support. The science is unable to conceives and explains an interaction between the immaterial and material domains (to understand nature of the mind), this question generating in literature the mind-body problem. We have published in the past a succession of articles related to the mind-body problem, in order to demonstrate the fact that this question is actually a false issue. The phenomenon of immaterial-material interaction is impossible to be explained because it never occurs, which means that there is no need to explain the immaterial-material interaction. Our mind implies only a temporal association between the immaterial data and material support, this dynamic interrelation being presented and argued here as a solution to the mind-body problem. The limited psycho-biologic approach of the mind-body problem is expanded here to a more comprehensive and feasible bio-psycho-social perspective, generating thus three distinct (bio- psychological, bio-social, and psycho-social) equations. These three equations can be solved through a solution represented by a dynamic cerebral system (two distinct and interconnected subunits of the brain) which presumably could have the capability of receiving and processing abstract data through association (with no interaction) between immaterial and material data

    Mutual interferences and design principles for mechatronic devices in magnetic resonance imaging

    Get PDF
    Purpose: Robotic and mechatronic devices that work compatibly with magnetic resonance imaging (MRI) are applied in diagnostic MRI, image-guided surgery, neurorehabilitation and neuroscience. MRI-compatible mechatronic systems must address the challenges imposed by the scanner's electromagnetic fields. We have developed objective quantitative evaluation criteria for device characteristics needed to formulate design guidelines that ensure MRI-compatibility based on safety, device functionality and image quality. Methods: The mutual interferences between an MRI system and mechatronic devices working in its vicinity are modeled and tested. For each interference, the involved components are listed, and a numerical measure for "MRI-compatibility” is proposed. These interferences are categorized into an MRI-compatibility matrix, with each element representing possible interactions between one part of the mechatronic system and one component of the electromagnetic fields. Based on this formulation, design principles for MRI-compatible mechatronic systems are proposed. Furthermore, test methods are developed to examine whether a mechatronic device indeed works without interferences within an MRI system. Finally, the proposed MRI-compatibility criteria and design guidelines have been applied to an actual design process that has been validated by the test procedures. Results: Objective and quantitative MRI-compatibility measures for mechatronic and robotic devices have been established. Applying the proposed design principles, potential problems in safety, device functionality and image quality can be considered in the design phase to ensure that the mechatronic system will fulfill the MRI-compatibility criteria. Conclusion: New guidelines and test procedures for MRI instrument compatibility provide a rational basis for design and evaluation of mechatronic devices in various MRI applications. Designers can apply these criteria and use the tests, so that MRI-compatibility results can accrue to build an experiential databas

    Bra.Di.P.O. and P.I.G.R.O.: Innovative Devices for Motor Learning Programs

    Get PDF
    Two mechatronics prototypes, useful for robotic neurotreatments and new clinical trainings, are here presented. P.I.G.R.O. (pneumatic interactive gait rehabilitation orthosis) is an active exoskeleton with an electropneumatic control. It imposes movements on lower limbs in order to produce in the patient’s brain proper motor cortex activation. Bra.Di.P.O. (brain discovery pneumatic orthosis) is an MR-compatible device, designed to improve fMRI (functional magnetic resonance imaging) analysis. The two devices are presented together because both are involved in the study of new robotic treatments of patients affected by ictus or brain stroke or in some motor learning experimental investigations carried out on healthy subjects
    • …
    corecore