3,067 research outputs found

    Neural correlates of motion-induced blindness in the human brain

    Get PDF
    Motion-induced blindness (MIB) is a visual phenomenon in which highly salient visual targets spontaneously disappear from visual awareness (and subsequently reappear) when superimposed on a moving background of distracters. Such fluctuations in awareness of the targets, although they remain physically present, provide an ideal paradigm to study the neural correlates of visual awareness. Existing behavioral data on MIB are consistent both with a role for structures early in visual processing and with involvement of high-level visual processes. To further investigate this issue, we used high field functional MRI to investigate signals in human low-level visual cortex and motion-sensitive area V5/MT while participants reported disappearance and reappearance of an MIB target. Surprisingly, perceptual invisibility of the target was coupled to an increase in activity in low-level visual cortex plus area V5/MT compared with when the target was visible. This increase was largest in retinotopic regions representing the target location. One possibility is that our findings result from an active process of completion of the field of distracters that acts locally in the visual cortex, coupled to a more global process that facilitates invisibility in general visual cortex. Our findings show that the earliest anatomical stages of human visual cortical processing are implicated in MIB, as with other forms of bistable perception

    A perspective on cortical layering and layer-spanning neuronal elements

    Get PDF
    This review article addresses the function of the layers of the cerebral cortex. We develop the perspective that cortical layering needs to be understood in terms of its functional anatomy, i.e., the terminations of synaptic inputs on distinct cellular compartments and their effect on cortical activity. The cortex is a hierarchical structure in which feed forward and feedback pathways have a layer-specific termination pattern. We take the view that the influence of synaptic inputs arriving at different cortical layers can only be understood in terms of their complex interaction with cellular biophysics and the subsequent computation that occurs at the cellular level. We use high-resolution fMRI, which can resolve activity across layers, as a case study for implementing this approach by describing how cognitive events arising from the laminar distribution of inputs can be interpreted by taking into account the properties of neurons that span different layers. This perspective is based on recent advances in measuring subcellular activity in distinct feed-forward and feedback axons and in dendrites as they span across layers

    The integration of bottom-up and top-down signals in human perception in health and disease

    Get PDF
    To extract a meaningful visual experience from the information falling on the retina, the visual system must integrate signals from multiple levels. Bottom-up signals provide input relating to local features while top-down signals provide contextual feedback and reflect internal states of the organism. In this thesis I will explore the nature and neural basis of this integration in two key areas. I will examine perceptual filling-in of artificial scotomas to investigate the bottom-up signals causing changes in perception when filling-in takes place. I will then examine how this perceptual filling-in is modified by top-down signals reflecting attention and working memory. I will also investigate hemianopic completion, an unusual form of filling-in, which may reflect a breakdown in top-down feedback from higher visual areas. The second part of the thesis will explore a different form of top-down control of visual processing. While the effects of cognitive mechanisms such as attention on visual processing are well-characterised, other types of top-down signal such as reward outcome are less well explored. I will therefore study whether signals relating to reward can influence visual processing. To address these questions, I will employ a range of methodologies including functional MRI, magnetoencephalography and behavioural testing in healthy participants and patients with cortical damage. I will demonstrate that perceptual filling-in of artificial scotomas is largely a bottom-up process but that higher cognitive functions can modulate the phenomenon. I will also show that reward modulates activity in higher visual areas in the absence of concurrent visual stimulation and that receiving reward leads to enhanced activity in primary visual cortex on the next trial. These findings reveal that integration occurs across multiple levels even for processes rooted in early retinotopic regions, and that higher cognitive processes such as reward can influence the earliest stages of cortical visual processing

    Neural activity in the visual thalamus reflects perceptual suppression

    Get PDF
    To examine the role of the visual thalamus in perception, we recorded neural activity in the lateral geniculate nucleus (LGN) and pulvinar of 2 macaque monkeys during a visual illusion that induced the intermittent perceptual suppression of a bright luminance patch. Neural responses were sorted on the basis of the trial-to-trial visibility of the stimulus, as reported by the animals. We found that neurons in the dorsal and ventral pulvinar, but not the LGN, showed changes in spiking rate according to stimulus visibility. Passive viewing control sessions showed such modulation to be independent of the monkeys' active report. Perceptual suppression was also accompanied by a marked drop in low-frequency power (9–30 Hz) of the local field potential (LFP) throughout the visual thalamus, but this modulation was not observed during passive viewing. Our findings demonstrate that visual responses of pulvinar neurons reflect the perceptual awareness of a stimulus, while those of LGN neurons do not

    The positional-specificity effect reveals a passive-trace contribution to visual short-term memory.

    Get PDF
    The positional-specificity effect refers to enhanced performance in visual short-term memory (VSTM) when the recognition probe is presented at the same location as had been the sample, even though location is irrelevant to the match/nonmatch decision. We investigated the mechanisms underlying this effect with behavioral and fMRI studies of object change-detection performance. To test whether the positional-specificity effect is a direct consequence of active storage in VSTM, we varied memory load, reasoning that it should be observed for all objects presented in a sub-span array of items. The results, however, indicated that although robust with a memory load of 1, the positional-specificity effect was restricted to the second of two sequentially presented sample stimuli in a load-of-2 experiment. An additional behavioral experiment showed that this disruption wasn't due to the increased load per se, because actively processing a second object--in the absence of a storage requirement--also eliminated the effect. These behavioral findings suggest that, during tests of object memory, position-related information is not actively stored in VSTM, but may be retained in a passive tag that marks the most recent site of selection. The fMRI data were consistent with this interpretation, failing to find location-specific bias in sustained delay-period activity, but revealing an enhanced response to recognition probes that matched the location of that trial's sample stimulus

    Bistable Percepts in the Brain: fMRI Contrasts Monocular Pattern Rivalry and Binocular Rivalry

    Get PDF
    The neural correlates of binocular rivalry have been actively debated in recent years, and are of considerable interest as they may shed light on mechanisms of conscious awareness. In a related phenomenon, monocular rivalry, a composite image is shown to both eyes. The subject experiences perceptual alternations in which the two stimulus components alternate in clarity or salience. The experience is similar to perceptual alternations in binocular rivalry, although the reduction in visibility of the suppressed component is greater for binocular rivalry, especially at higher stimulus contrasts. We used fMRI at 3T to image activity in visual cortex while subjects perceived either monocular or binocular rivalry, or a matched non-rivalrous control condition. The stimulus patterns were left/right oblique gratings with the luminance contrast set at 9%, 18% or 36%. Compared to a blank screen, both binocular and monocular rivalry showed a U-shaped function of activation as a function of stimulus contrast, i.e. higher activity for most areas at 9% and 36%. The sites of cortical activation for monocular rivalry included occipital pole (V1, V2, V3), ventral temporal, and superior parietal cortex. The additional areas for binocular rivalry included lateral occipital regions, as well as inferior parietal cortex close to the temporoparietal junction (TPJ). In particular, higher-tier areas MT+ and V3A were more active for binocular than monocular rivalry for all contrasts. In comparison, activation in V2 and V3 was reduced for binocular compared to monocular rivalry at the higher contrasts that evoked stronger binocular perceptual suppression, indicating that the effects of suppression are not limited to interocular suppression in V1

    Predictive masking of an artificial scotoma is associated with a system-wide reconfiguration of neural populations in the human visual cortex

    Get PDF
    The visual brain has the remarkable capacity to complete our percept of the world even when the information extracted from the visual scene is incomplete. This ability to predict missing information based on information from spatially adjacent regions is an intriguing attribute of healthy vision. Yet, it gains particular significance when it masks the perceptual consequences of a retinal lesion, leaving patients unaware of their partial loss of vision and ultimately delaying diagnosis and treatment. At present, our understanding of the neural basis of this masking process is limited which hinders both quantitative modelling as well as translational application. To overcome this, we asked the participants to view visual stimuli with and without superimposed artificial scotoma (AS). We used fMRI to record the associated cortical activity and applied model-based analyses to track changes in cortical population receptive fields and connectivity in response to the introduction of the AS. We found that throughout the visual field and cortical hierarchy, pRFs shifted their preferred position towards the AS border. Moreover, extrastriate areas biased their sampling of V1 towards sections outside the AS projection zone, thereby effectively masking the AS with signals from spared portions of the visual field. We speculate that the signals that drive these system-wide population modifications originate in extrastriate visual areas and, through feedback, also reconfigure the neural populations in the earlier visual areas

    Short-term memory of temporal aspects of noxious and innocuous thermal sensation : psychophysical and fMRI studies

    Full text link
    La douleur peut être considérée comme un système de protection qui signale une menace et qui nous avertit des dégâts imminents aux tissus. En tant que mécanisme de défense, il nécessite l'apprentissage et la mémoire des expériences du passé pour la survie et les comportements liés à la douleur. Par conséquent, notre expérience de la douleur actuelle est fortement influencée par les expériences antérieures et l'apprentissage. Cependant, malgré son importance, notre compréhension actuelle de l'interaction entre le système de la douleur et le système de mémoire est très limitée. La mémoire de la douleur est un sujet de recherche très vaste. Il nécessite une compréhension des mécanismes impliqués à chaque étape du système de mémoire (mémoire immédiate, à court terme et à long terme) et l'interaction entre eux. Parmi les étapes multiples de la mémoire, la mémoire à court terme de la douleur est une zone qui est moins recherchée, alors qu'il existe une énorme quantité de recherche neuroscientifique dans la mémoire à court terme sur d'autres modalités, en particulier la vision. L'étude de la mémoire à court terme de la douleur est particulièrement importante car cette trace de la mémoire à court terme de la douleur est ensuite convertie en mémoire à long terme et affecte ensuite les expériences futures de la douleur. Cette thèse est largement axée sur la mémoire à court terme de la douleur. La complexité et la multi dimensionnalité de la douleur ajoutent encore un autre élément à la recherche sur la mémoire de la douleur. Par exemple, la trace de la mémoire de la douleur peut contenir des traces de mémoire de diverses composantes de la douleur telles que la réponse sensorielle affective, cognitive et motrice et l'interaction entre elles. Par conséquent, une première étape dans l'exploration neuroscientifique de la mémoire de la douleur nécessite la réduction de l'expérience de la douleur tout en englobant tous ces différents composants à un seul composant. Dans la recherche présentée ici, nous avons généralement examiné cela par des instructions d'attention ‘ top-down’ pour assister à la dimension sensorielle de la douleur. La recherche précédente sur la mémoire à court terme de la douleur a également porté principalement sur la dimension sensorielle de la douleur. Cependant, parmi les dimensions sensorielles de la douleur, la mémoire à court terme de l'intensité et de la dimension spatiale de la douleur a fait l'objet de recherches antérieures. Malgré son importance, la dimension temporelle de la douleur est restée complètement inexplorée dans la recherche sur la mémoire de la douleur. La recherche menée dans cette thèse est consacrée à l'exploration de la mémoire à court terme de la durée de la douleur. La durée de la douleur peut être suivie de manière indépendante, mais peut également être suivie conjointement avec la dimension d'intensité telle que le suivi dynamique de l'intensité de la douleur dans le temps. Les études menées dans cette thèse traitent spécifiquement du traitement isolé de la durée de la douleur ainsi que du traitement conjoint de la dimension durée / intensité de la douleur. La première étude psychophysique a exploré la nature de la représentation mentale du modèle de mémoire de la douleur thermique dynamique et a également été conçue pour aborder les différences de la dimension sensorielle et affective de la douleur thermique dans la mémoire à court terme. La deuxième étude psychophysique portait sur les propriétés de la mémoire à court terme de la sensation thermique non douloureux en comparant le suivi dynamique de la sensation et le suivi isolé de la durée d'un événement thermique non douloureux. La troisième étude poursuit l'exploration du traitement dynamique de la durée conjointement avec l'intensité par rapport au traitement isolé de la durée dans la mémoire à court terme en utilisant des stimuli thermiques douloureuse une résonance magnétique fonctionnelle (IRMF). Dans l'ensemble, les résultats des études psychophysiques ont montré une transformation significative de la durée et de la dynamique de la sensation thermique douloureux et non-douloureux dans la mémoire à court terme; comme la perte d'informations somatosensorielles temporelles en mémoire. Nous avons en outre montré une amélioration du rappel de la durée dans le suivi dynamique de la durée, en comparaison avec le suivi de la durée isolée. Nous avons également montré des différences dans les corrélats neuronaux de la mémoire à court terme de la durée de douleur par rapport à la dynamique de douleur. L'étude de l'IRMF a montré des similitudes frappantes dans les corrélats neuronaux sous-jacents à la mémoire à court terme de douleur et d'autres modalités telles que la contribution des coticés fronto-pariétales ainsi que les corticaux sensoriels impliqués dans le traitement perceptuel.Pain can be viewed as a protective system that signals threat and alerts us to impending tissue damage. As a defense mechanism, it necessitates the learning and memory of past painful experiences for survival and pain-related behavior. Therefore our current pain experience is heavily influenced by previous experiences and learning. However, despite its importance, our current understanding of the interaction between the pain system and the memory system is very limited. Pain memory is a very broad topic of research on its own. It requires an understanding of the mechanisms involved at each stage of the memory system (immediate, short-term, and long-term memory), and the interaction among them. Among the multiple stages of memory, the short-term memory of pain is an area that is less researched, while there are enormous amount of neuroscientific research in short-term memory of other modalities, particularly vision. Investigation of the short-term memory of pain is especially important as the short-term memory trace of pain is converted to long-term memory and subsequently affects future pain experiences. This thesis is broadly focused on the short-term memory of pain. The complexity and multi-dimensionality of pain adds yet another element to the research on pain memory. For example, the memory trace of pain may contain memory traces of various components of pain such as sensory, affective, cognitive, and motoric responses, and the interactions among them. Therefore, an initial step in the neuroscientific exploration of pain memory requires narrowing down the pain experience, which encompasses all of these various components, to one single component. In the research presented here, we achieved this using top-down attentional instructions to attend to the sensory component of pain. The previous research on short-term memory of pain also focused mainly on the sensory component of pain. However, within the sensory component of pain the short-term memory of intensity and spatial dimension of pain has been the focus of previous research. Despite its importance, the temporal dimension of pain remained completely unexplored in pain memory research. Thus, the research conducted in this thesis is devoted to the exploration of short-term memory of the duration of pain. Pain duration can be tracked independently, but it can also be tracked conjointly with intensity, such as in dynamic tracking of pain intensity over time. The studies addressed in this thesis examined the isolated processing of pain duration as well as conjoint processing of the duration and intensity of pain. The first psychophysical study explored the nature of the mental representation of the memory template of dynamic thermal pain sensation and, additionally, addressed the differences between the sensory versus affective dimensions of thermal pain sensation in short-term memory. The second psychophysical study focused on properties of the short-term memory of innocuous thermal sensation by comparing dynamic tracking of sensation versus isolated tracking of duration of an innocuous thermal event. The third study explored the dynamic processing of duration conjointly with intensity, versus the isolated processing of duration in short-term memory, using noxious thermal stimuli and functional magnetic resonance imaging (fMRI). Overall, the results of the psychophysical studies showed significant transformation of duration and dynamics information of noxious and innocuous thermal sensation in short-term memory, such as loss of temporal somatosensory information. Additionally, we showed improvement in duration recall during dynamic tracking versus isolated tracking of duration. The fMRI study revealed differences in neural correlates of short-term memory of pain duration versus pain dynamics. Importantly, it also showed striking similarities between neural correlates underlying the short-term memory of pain and those underlying other modalities, such as a contribution of fronto-parietal cortices as well as sensory cortices involved in perceptual processing

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Topographic representation of an occluded object and the effects of spatiotemporal context in human early visual areas.

    Get PDF
    モノの背後を見る脳の仕組みを解明 -視対象の部分像から全体像を復元する第1次視覚野の活動をfMRIで観察-. 京都大学プレスリリース. 2013-10-23.Occlusion is a primary challenge facing the visual system in perceiving object shapes in intricate natural scenes. Although behavior, neurophysiological, and modeling studies have shown that occluded portions of objects may be completed at the early stage of visual processing, we have little knowledge on how and where in the human brain the completion is realized. Here, we provide functional magnetic resonance imaging (fMRI) evidence that the occluded portion of an object is indeed represented topographically in human V1 and V2. Specifically, we find the topographic cortical responses corresponding to the invisible object rotation in V1 and V2. Furthermore, by investigating neural responses for the occluded target rotation within precisely defined cortical subregions, we could dissociate the topographic neural representation of the occluded portion from other types of neural processing such as object edge processing. We further demonstrate that the early topographic representation in V1 can be modulated by prior knowledge of a whole appearance of an object obtained before partial occlusion. These findings suggest that primary "visual" area V1 has the ability to process not only visible or virtually (illusorily) perceived objects but also "invisible" portions of objects without concurrent visual sensation such as luminance enhancement to these portions. The results also suggest that low-level image features and higher preceding cognitive context are integrated into a unified topographic representation of occluded portion in early areas
    corecore