48,594 research outputs found

    The MATSim Network Flow Model for Traffic Simulation Adapted to Large-Scale Emergency Egress and an Application to the Evacuation of the Indonesian City of Padang in Case of a Tsunami Warning

    Get PDF
    The evacuation of whole cities or even regions is an important problem, as demonstrated by recent events such as evacuation of Houston in the case of Hurricane Rita or the evacuation of coastal cities in the case of Tsunamis. This paper describes a complex evacuation simulation framework for the city of Pandang, with approximately 1,000,000 inhabitants. Padang faces a high risk of being inundated by a tsunami wave. The evacuation simulation is based on the MATSim framework for large-scale transport simulations. Different optimization parameters like evacuation distance, evacuation time, or the variation of the advance warning time are investigated. The results are given as overall evacuation times, evacuation curves, an detailed GIS analysis of the evacuation directions. All these results are discussed with regard to their usability for evacuation recommendations.BMBF, 03G0666E, Verbundprojekt FW: Last-mile Evacuation; Vorhaben: Evakuierungsanalyse und Verkehrsoptimierung, Evakuierungsplan einer Stadt - Sonderprogramm GEOTECHNOLOGIENBMBF, 03NAPAI4, Transport und Verkehr: Verbundprojekt ADVEST: Adaptive Verkehrssteuerung; Teilprojekt Verkehrsplanung und Verkehrssteuerung in Megacitie

    Distributed agent-based building evacuation simulator

    Get PDF
    The optimisation of the evacuation of a building plays a fundamental role in emergency situations. The behaviour of individuals, the directions that civilians receive, and the actions of the emergency personnel, will affect the success of the operation. We describe a simulation system that represents the individual, intelligent, and interacting agents that cooperate and compete while evacuating the building. The system also takes into account detailed information about the building and the sensory capabilities that it may contain. Since the level of detail represented in such a simulation can lead to computational needs that grow at least as a polynomial function of the number of the simulated agents, we propose an agent-oriented Distributed Building Evacuation Simulator (DBES). The DBES is integrated with a wireless sensor network which offers a closed loop representation of the evacuation procedure, including the sensed data and the emergency decision making

    Deceleration in The Micro Traffic Model and Its Application to Simulation for Evacuation from Disaster Area

    Get PDF
    Referring to the Nagel–Schreckenberg’s (NaSch) model, we have studied the impact of agent and diligent driver into the micro traffic model in the case of evacuation. This study is attention to the deceleration that added in the micro traffic model. The effect of deceleration to simulation for evacuation from disaster area is considered. The traffic flow property is studied by analyzing the time-space diagram. The simulation results show that deceleration caused the evacuation time increases when we compare it by without deceleration

    An extended car following approach using agent based model on evacuation system of micro traffic

    Get PDF
    We proposed an extended car-following approach on evacuation system of micro traffic. It is based on the agent model. Parameter which is owned by the agent is the velocity. We added one driving behavior in the car-following a smart driver. Characteristics of smart driver he has a concern for the distance between his vehicle with the vehicle in front of him so that he will change the speed based on aforementioned conditions. Smart driver is determined randomly, and he can become an agent. In the simulation, we observed the evacuation time toward the smart driver and the mean speed respectively based on the number of agents. Keyword: car-following, micro traffic, smart driver, agent based model, evacuation tim

    Agent-Based Emergency Evacuation Simulation with Individuals with Disabilities in the Population

    Get PDF
    Catastrophic events have raised numerous issues concerning how effectively the built environment accommodates the evacuation needs of individuals with disabilities. Individuals with disabilities represent a significant, yet often overlooked, portion of the population disproportionately affected in emergency situations. Incorporating disability considerations into emergency evacuation planning, preparation, and other activities is critical. The most widely applied method used to evaluate how effectively the built environment accommodates emergency evacuations is agent-based or microsimulation modeling. However, current evacuation models do not adequately address individuals with disabilities in their simulated populations. This manuscript describes the BUMMPEE model, an agent-based simulation capable of classifying the built environment according to environmental characteristics and simulating a heterogeneous population according to variation in individual criteria. The method allows for simulated behaviors which more aptly represent the diversity and prevalence of disabilities in the population and their interaction with the built environment. Comparison of the results of an evacuation simulated using the BUMMPEE model is comparable to a physical evacuation with a similar population and setting. The results of the comparison indicate that the BUMMPEE model is a reasonable approach for simulating evacuations representing the diversity and prevalence of disability in the populationAgent-Based Simulation, Individual-Based Simulation, Disability, Emergency Egress, Evacuation, Reinforcement Learning
    corecore