1,239 research outputs found

    Development of an Epileptic Seizure Detection Application based on Parallel Computing

    Get PDF
    Abstract—Epileptic seizure detection in a large database of Electroencephalography (EEG) signals needs to be a time constrained process for real-time analysis. Epileptic seizure detection algorithms are designed to obtain and analyze a group of neural signals and recognize the presence of seizure occurrence. The computational cost of the algorithms should be minimized to reduce the processing time and memory consumption. Automated epileptic seizure detection using optimized feature selection improves the classification accuracy, but it occupies more processing time during the Artifact Removal (AR) stage. So, the execution time is greatly reduced by introducing task parallelism in the artifact removal stage. By harnessing parallel computing the computational overhead and processing time are decreased. An epileptic seizure detection application is developed and analyzed with respect to execution time, speedup, and parallel efficiency. The application was developed in Intel Pentium(R) Dual-core CPU with processor clock rate of 2.60 GHz, memory of 1.96 GB, and operating system of Windows X

    A Novel Method for Epileptic Seizure Detection Using Coupled Hidden Markov Models

    Full text link
    We propose a novel Coupled Hidden Markov Model to detect epileptic seizures in multichannel electroencephalography (EEG) data. Our model defines a network of seizure propagation paths to capture both the temporal and spatial evolution of epileptic activity. To address the intractability introduced by the coupled interactions, we derive a variational inference procedure to efficiently infer the seizure evolution from spectral patterns in the EEG data. We validate our model on EEG aquired under clinical conditions in the Epilepsy Monitoring Unit of the Johns Hopkins Hospital. Using 5-fold cross validation, we demonstrate that our model outperforms three baseline approaches which rely on a classical detection framework. Our model also demonstrates the potential to localize seizure onset zones in focal epilepsy.Comment: To appear in MICCAI 2018 Proceeding

    Classification of Epileptic EEG Signals by Wavelet based CFC

    Full text link
    Electroencephalogram, an influential equipment for analyzing humans activities and recognition of seizure attacks can play a crucial role in designing accurate systems which can distinguish ictal seizures from regular brain alertness, since it is the first step towards accomplishing a high accuracy computer aided diagnosis system (CAD). In this article a novel approach for classification of ictal signals with wavelet based cross frequency coupling (CFC) is suggested. After extracting features by wavelet based CFC, optimal features have been selected by t-test and quadratic discriminant analysis (QDA) have completed the Classification.Comment: Electroencephalogram; Wavelet Decomposition; Cross Frequency Coupling;Quadratic Discriminant Analysis; T-test Feature Selectio
    corecore