570 research outputs found

    Interaction of mycobacterium tuberculosis with the host cells: a focus in the molecular mechanism involved in trafficking and autophagy

    Get PDF
    Tuberculosis (TB) is an ancient disease remaining a serious health threat worldwide. It is caused by Mycobacterium tuberculosis (Mtb), an acid-fast bacilli, non-sporulated, slow-growing, immobile and aerobic. The pathogenesis of the disease is based on its ability to multiply and survive within phagocytic cells of the host, particularly macrophages and monocytes. The majority (90 %) of infected humans have a ?latent infection?, meaning they efficiently contain but do not spread the bacteria; they are infected but asymptomatic and not contagious. However the remaining 10 % have a lifetime risk of reactivating the infection and developing active tuberculosis (Sakamoto, 2012). The great destructive impact on public health, the co-infection with the human immunodeficiency virus (HIV) and the appearance of drug resistant strains of Mtb are demanding the development of new tools for prevention and treatment.During the last decade a greater understanding on the human immune response to Mtb infection as well as the contribution of factors linked to the pathogenesis of the disease has been achieved. Although the knowledge about the human immune response against Mtb as well as the contribution of factors linked to the pathogenesis of the disease have markedly increased in the last year, a deeper understanding of its immunopathogenesis will lead to the identification of new drugs and the development of effective vaccines.Fil: Zarelli, Valeria Eugenia Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Giai, Constanza. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Colombo, Maria Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; Argentin

    Visualization of the exocyst complex dynamics at the plasma membrane of Arabidopsis thaliana

    Get PDF
    The exocyst complex, an effector of Rho and Rab GTPases, is believed to function as an exocytotic vesicle tether at the plasma membrane before soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex formation. Exocyst subunits localize to secretory-active regions of the plasma membrane, exemplified by the outer domain of Arabidopsis root epidermal cells. Using variable-angle epifluorescence microscopy, we visualized the dynamics of exocyst subunits at this domain. The subunits colocalized in defined foci at the plasma membrane, distinct from endocytic sites. Exocyst foci were independent of cytoskeleton, although prolonged actin disruption led to changes in exocyst localization. Exocyst foci partially overlapped with vesicles visualized by VAMP721 v-SNARE, but the majority of the foci represent sites without vesicles, as indicated by electron microscopy and drug treatments, supporting the concept of the exocyst functioning as a dynamic particle. We observed a decrease of SEC6-green fluorescent protein foci in an exo70A1 exocyst mutant. Finally, we documented decreased VAMP721 trafficking to the plasma membrane in exo70A1 and exo84b mutants. Our data support the concept that the exocyst-complex subunits dynamically dock and undock at the plasma membrane to create sites primed for vesicle tethering

    Accelerated amyloid deposition, neurofibrillary degeneration and neuronal loss in double mutant APP/tau transgenic mice

    Get PDF
    Even though the idea that amyloid beta peptide accumulation is the primary event in the pathogenesis of Alzheimer's disease has become the leading hypothesis, the causal link between aberrant amyloid precursor protein processing and tau alterations in this type of dementia remains controversial. We further investigated the role of beta-amyloid production/deposition in tau pathology and neuronal cell death in the mouse brain by crossing Tg2576 and VLW lines expressing human mutant amyloid precursor protein and human mutant tau, respectively. The resulting double transgenic mice showed enhanced amyloid deposition accompanied by neurofibrillary degeneration and overt neuronal loss in selectively vulnerable brain limbic areas. These findings challenge the idea that tau pathology in Alzheimer's disease is merely a downstream effect of amyloid production/deposition and suggest that reciprocal interactions between beta-amyloid and tau alterations may take place in vivo

    PICK1 links Argonaute 2 to endosomes in neuronal dendrites and regulates miRNA activity.

    Get PDF
    MicroRNAs fine-tune gene expression by inhibiting the translation of mRNA targets. Argonaute (Ago) proteins are critical mediators of microRNA-induced post-transcriptional silencing and have been shown to associate with endosomal compartments, but the molecular mechanisms that underlie this process are unclear, especially in neurons. Here, we report a novel interaction between Ago2 and the BAR-domain protein, PICK1. We show that PICK1 promotes Ago2 localization at endosomal compartments in neuronal dendrites and inhibits Ago2 function in translational repression following neuronal stimulation. We propose that PICK1 provides a link between activity-dependent endosomal trafficking and local regulation of translation in neurons

    Intracellular proton pumps as targets in chemotherapy: V-ATPases and cancer

    Get PDF
    Cancer cells show a metabolic shift that makes them overproduce protons; this has the potential to disturb the cellular acid-base homeostasis. However, these cells show cytoplasmic alkalinisation, increased acid extrusion and endosome-dependent drug resistance. Vacuolar type ATPases (V-ATPases), toghether with other transporters, are responsible to a great extent for these symptoms. These multisubunit proton pumps are involved in the control of cytosolic pH and the generation of proton gradients (positive inside) across endocellular membrane systems like Golgi, endosomes or lysosomes. In addition, in tumours, they have been determined to play an important role in the acidification of the intercellular medium. This importance makes them an attractive target for control of tumour cells. In the present review we portray the major characteristics of this kind of proton pumps, we provide some recent insights on their in vivo regulation, an overview of the consequences that V-ATPase inhibition carries for the tumour cell, such as cell cycle arrest or cell death, and a brief summary of the studies related to cancer made recently with commercially available inhibitors for this kind of proton pump. Some new approaches to affect V-ATPase function are also suggested in the light of recent knowledge on the regulation of this proton pump.Junta de Andalucía PAIDI BIO-261 P07-CVI-3082Ministerio de Ciencia e Innovación BFU2007-61887 BFU2010-1562

    Pathogenic mutations in the hydrophobic core of the human prion protein can promote structural instability and misfolding

    Get PDF
    Transmissible spongiform encephalopathies, or prion diseases, are caused by misfolding and aggregation of the prion protein PrP. These diseases can be hereditary in humans and four of the many disease-associated missense mutants of PrP are in the hydrophobic core: V180I, F198S, V203I and V210I. The T183A mutation is related to the hydrophobic core mutants as it is close to the hydrophobic core and known to cause instability. We have performed extensive molecular dynamics simulations of these five PrP mutants and compared their dynamics and conformations to wild-type PrP. The simulations highlight the changes that occur upon introduction of mutations and help to rationalize experimental findings. Changes can occur around the mutation site, but they can also be propagated over long distances. In particular, the F198S and T183A mutations lead to increased flexibility in parts of the structure that are normally stable, and the short β-sheet moves away from the rest of the protein. Mutations V180I, V210I and, to a lesser extent, V203I cause changes similar to those observed upon lowering the pH, which has been linked to misfolding. Early misfolding is observed in one V180I simulation. Overall, mutations in the hydrophobic core have a significant effect on the dynamics and stability of PrP, including the propensity to misfold, which helps to explain their role in the development of familial prion diseases

    Recent advances on biocompatible and biodegradable nanoparticles as gene carriers

    Get PDF
    Introduction: Gene therapy mainly depends on the use of appropriate delivery vehicles with no induction of immune responses and toxicity. The limitations of viral gene carriers such as induction of immunogenicity, random integration in the genome of the host, limitations in the size, has led to a movement toward non-viral systems with much safer properties. Biodegradable and biocompatible polymeric nanocarriers due to several unique properties such as excellent biocompatibility, prolonged gene circulation time, prevented gene degradation, passive targeting by using the enhanced permeability and retention (EPR) effect, and possibility of modulating polymers structure to obtain desirable therapeutic efficacy, are among the most promising systems for gene delivery. However, biodegradable gene delivery systems have some limitations such as inadequate stability and slow release of therapeutics which have to be overcome. Thus, a variety of advanced functional biodegradable delivery systems with more efficient gene delivery activity has recently been introduced. Areas covered: This review summarizes different aspects of biodegradable and biocompatible nano carriers including formulation, mechanism of intracellular uptake, various potential applications of biodegradable nanoparticles and finally recent studies on the therapeutic efficacy of these nanoparticles in sustained delivery of genes

    Molecular dynamics as an approach to study prion protein misfolding and the effect of pathogenic mutations

    Get PDF
    Computer simulation of protein dynamics offers unique high-resolution information that complements experiment. Using experimentally derived structures of the natively folded prion protein (PrP), physically realistic dynamics and conformational changes can be simulated, including the initial steps of misfolding. By introducing mutations in silico, the effect of pathogenic mutations on PrP conformation and dynamics can be assessed. Here, we briefly introduce molecular dynamics methods and review the application of molecular dynamics simulations to obtain insight into various aspects of the PrP, including the mechanism of misfolding, the response to changes in the environment, and the influence of disease-related mutations
    corecore