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Abstract 
 

Cancer cells show a metabolic shift that makes them overproduce protons; this has the 

potential to disturb the cellular acid-base homeostasis. However, these cells show 

cytoplasmic alkalinisation, increased acid extrusion and endosome-dependent drug 

resistance. Vacuolar type ATPases (V-ATPases), toghether with other transporters, are 

responsible to a great extent for these symptoms. These multisubunit proton pumps are 

involved in the control of cytosolic pH and the generation of proton gradients (positive 

inside) across endocellular membrane systems like Golgi, endosomes or lysosomes. In 

addition, in tumours, they have been determined to play an important role in the 

acidification of the intercellular medium. This importance makes them an attractive target 

for control of tumour cells. In the present review we portray the major characteristics of 

this kind of proton pumps, we provide some recent insights on their in vivo regulation, an 

overview of the consequences that V-ATPase inhibition carries for the tumour cell, such as 

cell cycle arrest or cell death, and a brief summary of the studies related to cancer made 

recently with commercially available inhibitors for this kind of proton pump. Some new 

approaches to affect V-ATPase function are also suggested in the light of recent 

knowledge on the regulation of this proton pump. 
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In tumor cells, NADH is recycled to its oxidised form by reducing pyruvate to lactic acid, 

instead of being transported to and being processed at the mitochondria. As a consequence, 

two H+ per glucose molecule consumed are released into the cytosol and need to be 

disposed of in order to maintain cytosolic pH homeostasis. Strikingly, tumour cells not 

only maintain a near-neutral pH, but they often display a slightly alkaline cytosol in 

comparison to normal cells, probably as an acquired advantage against apoptosis induction 

[1]. The most obvious way to dispose of H+ is to extrude them to the intercellular space. 

This has some added advantages for the tumour cell: lactate and H+ are immunosuppresors 

that impair cytotoxic T lymphocyte metabolism [2]. Moreover, an acid external medium 

promotes invasion and cell proliferation by providing the optimal conditions for proteases 

like cathepsins or matrix metalloproteases that can degrade the intercellular matrix and 

promote angiogenesis [3] and even help the scape of highly proliferating or metastatic cells 

from the tumour into adjacent tissues or the blood stream [4]. All this, together with the 

fact that solid tumours typically display deficient perfusion, especially at the inner core, 

complicates cytosolic homeostasis because steep H+ gradients need to be maintained across 

the plasma membrane of neoplastic cells in order to keep H+ from flooding back into the 

cytoplasm. V-ATPases represent the sole primary H+ transporters in endosomes, Golgi 

cisternae and lysosomes in mammalian cells. In other organisms, such as parasitic 

trypanosomatids –responsible for diseases like malaria, Kala azar, sleeping sickness or 

chagas disease- H+-pumping pyrophosphatases comprise a second set of pumps and may 

be an important pharmacological target to fight these ailments [5, 6]. V-ATPases are 

usually absent from the cell surface, but it is naturally located at the plasma membrane of 

some cell types such as those at the vas deferens and in osteocytes [7, 8]. In tumour cells, 

its presence at the plasma membrane has been reported [9, 10]. How this location is 
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achieved by a usually intracellular protein is still obscure, but examples of other proteins 

of similar origin being found in the extracellular environment are known in neoplasic cells, 

e.g. the cathepsins [11]. It is thought that plasmalemmal V-ATPases play a significant role 

in proton extrusion and regulation of cytosolic pH in mammalian cells [12]. At any rate, 

plasma membrane V-ATPase abundance have been shown to correlate with metastatic and 

proliferative potential [9, 12].  

 

ACIDIFICATION OF INTERNAL CELL COMPARTMENTS 

 

An overproduction of acid equivalents also has implications in internal organelles since 

many of them maintain pH values in their lumina that need to differ substantially from that 

of the cytoplasm. Under physiological conditions, maintenance of these proton gradients 

has been found to be necessary for vacuole fusion [13], glycosylation of proteins in the 

Golgi apparatus [14, 15], ligand-receptor dissociation and recycling in endosomes [16], 

endosomal proteolysis of ligands [17], and protein transport from endosomes to lysosomes 

[18]. In addition, drug sequestration is also dependent on the maintenance of lysosomal 

acidification [19]. The endo and exocytic pathways transport cargo and vesicles between 

different organelles (Fig. 1). As a gross simplification, it could be considered that the 

endoplasmic reticulum (ER) lies at one end of these pathways, while the lysosome and the 

plasma membrane would represent the other end. The ER maintains no pH difference 

compared with that of the cytosol. However, the closer we move towards the lysosome and 

the plasma membrane, H+ gradients (acid inside) maintained in the lumina of the different 

organelles become steeper (Fig. 1).  
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It must be noted that, although V-ATPases are the primary pumps driving the 

accumulation of protons inside single-membrane organelles, the final proton gradient 

formed is the result of the interaction of several other factors playing in favour or against 

the build up of such a gradient. For example, biological membranes are, to some extent, 

permeable to protons; also, secondary transporters consume accumulated protons to drive 

the translocation of substrates such as Na+ or amino acids. Conversely, the action of 

channels that dissipate the electrical gradient associated to the accumulation of positive 

charges (e.g. Cl- channels) allow a greater accumulation of H+. In addition, resident 

proteins and solutes with (de)protonable residues provide buffering capacity to organelle 

lumina. For a detailed view on the determinants acting on these organelles, the reader may 

refer to more specialised reviews [20, 21]. Although an intervention on any of these factors 

should produce an alteration of luminal pH, many of these are difficult to target and the 

extent of the individual importance of some others is still unknown. Hence V-ATPase 

reveals itself as the best candidate for pharmacological intervention to affect luminal 

acidification. 

 

STRUCTURE OF V-ATPASES 

 

These H+-pumps are complex multisubunit enzymes capable of coupling the hydrolysis of 

ATP or, with a much lower affinity, GTP to the translocation of H+ across a membrane 

[22]. Its name derives from being first identified at the plant vacuolar membrane as a H+-

pump different to those found in mitochondria and plasma membrane (F0F1 and P-type 

ATPases, respectively). All in all, the fully assembled mammalian holoenzyme displays a 

molecular mass nearing 900 kDa. 
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The V-ATPase was early observed to share some structural homology with the F0F1 

ATPase of mitochondria and bacteria [23] and thus, much of its domain nomenclature is 

influenced by knowledge on the mitochondrial pump. Indeed it is considered likely that 

these two types of ATPases share a common ancestor that behaved as an ATP synthase, 

probably akin to that found in present archaea [24]. Similarly to bacterial and 

mitochondrial transporters, V-ATPases are composed of two different multisubunit 

domains: one composed of lipophylic polypeptides and the other by hydrophylic proteins. 

The hydrophylic domain, named V1 by similarity to the F1 domain in F0F1 ATPases, is 

composed by eight different polypeptides (termed always using capital letters, A to H) 

(Fig. 2). The stoichiometry of these polypeptides is three for A, B, E and G and one for C, 

D, H, and F. Polypeptides A and B form an hexamer complex alternating A’s with B’s; 

single components attach to this substructure and to each other mostly on the V0-proximal 

side. On their turn, polypeptides E and G extend their physical interaction further up to 

provide a bridge between the V1 domain and RAVE complexes involved in regulation of 

V0/V1 assembly [25]. On its turn, the V0 domain consists of a ring composed of five c 

subunits and a single c’’ one. In close contact with this, there are single copies of a, d and e 

subunits and, in the case of mammals, an accessory subunit termed Ac45. This last subunit 

may be specific of plasma membrane localised pumps [26]. 

Subunits A in the V1 domain have ATPase hydrolytic activity and, since subunits B 

immobilise the V1 domain through their interaction with the actin cytoskeleton [27, 28], 

the free energy released in these reactions is transmitted, with the help of subunitis Dfd, to 

the cc'' subunit ring providing torque for the rotation of the latter [29]. Noteworthy, 

subunits C, E, G, H, in the V1 domain, and subunit a in the V0 domain remain static 
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through its physical interaction with the A3B3 hexamer. This is important because subunit a 

contains two hydrophylic hemichannels. The first one feeds H+ from the external side of 

the membrane to the c and c’’ subunits. Protons are bound by glutamic acid residues in the 

core of these polypeptides and kept for a full turn with the help of the hydrophobic 

environment of the membrane until the loaded subunit c or c’’ reaches back subunit a and 

comes in contact with the second hemichannel. This second hemichannel permits the exit 

of the H+ from the luminal side of the membrane. Typically, V-ATPase rotors turn 

clockwise, as seen from the normal to the cytosolic plane of the membrane, and, in a single 

360o rotation, up to two H+ are translocated per ATP consumed [29]. However, actual H+ 

stoichiometry depends on the isoform of subunit a that integrates the pump. Thus, in 

budding yeast, Stv1p isoform generates pumps that translocate a single H+ per ATP 

consumed, while Vph1p harbouring V-ATPases conform to the theoretical 2 H+/ATP [30]. 

The implications of this in V-ATPase regulation will be dealt with farther on. 

 

REGULATION OF V-ATPASE ACTIVITY 

 

Knowledge on regulation of V-ATPase activity has received a boost recently. The best 

characterised mechanism of its H+-pumping activity regulation is by assembly/dissasembly 

of the holoenzyme. Under physiological conditions, domains V0 and V1 are devoid of H+ 

transport or ATP hydrolytic activity, respectively, when not as part of the holoenzyme [31, 

32]. This makes possible to use assembly of the pump as a comparatively simple 

mechanism to regulate dynamically the total H+ transport capacity on the envelope of an 

organelle. Domain V0 is synthesized and assembled in the ER and transported to the Golgi 

system via COP II coated vesicles where it will receive a V1 domain already assembled in 
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the cytosol [33]. However, this holoenzyme can disassemble and reassemble V1 and V0 

domains in response to cell energy status. In yeast, it was early shown that vacuolar V-

ATPases rapidly disassembled upon glucose deprivation but that it could reassemble when 

the sugar was added back to the growth medium [34]. This same behaviour has been 

observed in renal epithelial cells [35, 36] and, probably, it plays a role in other tissues, as it 

is suggested by the results reported on ovine rumen [37]. The first indication of a 

regulatory link between carbohydrate metabolism and reversible assembly of this H+-pump 

came from osteoclasts and kidney cells, where aldolase was identified as a an interacting 

partner with subunit E influencing the assembly of the holoenzyme [38]. Later it was 

determined that the enzymatic activity of aldolase was not required for its regulatory 

function [39]. Anyhow, this behaviour has been best studied in budding yeast and much of 

the following information comes from this model organism. Noteworthy, the mechanisms 

for assembly and disassembly are different: while disassembly requires an intact tubulin 

microtubular network, reassembly of the holoenzyme depends on RAVE (regulator of the 

H+-ATPase of vacuolar and endosomal membranes), a protein complex that interact with 

subunits E, G and C and maintains them in an assembly-competent state [40]. In yeast, 

reversible (re)assembly of the holoenzyme has been proposed to derive from 

ras/cAMP/PKA pathway activation [41]. According to this model, intracellular glucose 

would activate the ras pathway leading to PKA activation through an increase in cAMP 

[41]. How PKA could be exerting its influence on assembly is still not clear; work by Voss 

et al. has shown a direct phosphorylation of subunit C by PKA that could influence V1/V0 

assembly [42, 43]. In line with this, PKA has already been reported to phosphorylate the 

catalytic subunit A and regulate V-ATPase activity in human kidney cells [44], although 

no data on dissociation of the complex was reported in this case. Related to this, AMPK 
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(AMP-activated protein kinase) could be exerting an inhibitory role, opposed to  activation 

by PKA, in kidney epidydimal cells [45, 46]; however, in this report AMPK would be 

affecting the H+-pump distribution rather than assembly. Alternatively, at least in yeast, 

glucose metabolism, or to be more exact, a high glycolytic flux, would translate into an 

increased cytosolic pH that could be sensed by V-ATPases through yet obscure 

mechanisms and this would drive their reassembly; activation of PKA would result as a 

downstream effect of the reactivation of H+ transport [47]. This is in agreement with 

subunit a being proposed as a pH sensor for the holoenzyme, both in yeast and in kidney 

epithelial cells [48-50]. Further work is needed to clarify the involvement of PKA in 

reassembly. It would be interesting to ascertain if this kinase shows any effect on RAVE. 

Nevertheless, extracellular pH has been shown to affect the ability of yeast V-ATPases to 

reversibly dissociate their V1 and V0 domains [51], although in this case cytosolic pH was 

shown not to be altered. In addition to this, other signalling pathways may also be 

contributing to the regulation of V-ATPases. In proximal tubule and kidney cells, PI3-

kinase has been reported to activate V-ATPase activity and assembly [35, 36, 52], and in 

the former type of cells, angiotensin II could be exerting an activation of the enzyme 

through both PI3K and p38MAPK [53]. Other protein kinases, such as analogs of the yeast 

stress and cell-cycle related Dbf2p [54], may prove important for V-ATPase activity and 

assembly in mammalian cells in the future. 

 

Regulation of gene expression is a commonly encountered mechanism for enzyme activity 

regulation. However, as it is easily understandable for a multisubunit complex that is 

composed of at least 13 different polypeptides, the concerted gene regulation of all of them 

is cumbersome. In agreement with this, early studies supported the notion that V-ATPases 
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were housekeeping proteins. Promoters corresponding to isoforms of proteins A, B and c 

from Neurospora crassa showed no recognisable TATA boxes and a high G+C content, 

characteristics associated to other known housekeeping genes [55]. However, as it was 

noted already by then, some subunit B isoforms in human macrophages and in the tobacco 

hornworm Manduca sexta showed indications in their promoters of being inducible. 

Advances in this field have been sparing and, for the most part, there is little detailed 

knowledge on inducibility of other isoforms and subunits. However, overexpression of 

subunits C and c have been found in the context of cancer: it has been shown that 

ATP6V1C1 human gene (encoding subunit C) is overexpressed in oral squamous 

carcinoma cells and that this may promote a greater degree of V1V0 assembly than in 

normal tissue [56]. Similarly, different subunit genes have been found to be overexpressed 

in drug-resistant cell lines, including ATP6L (ATP6V0C, subunit c) in the case of cisplatin 

resistance [57]. Remarkably, it has been reported recently that active mTORC1 induces the 

expression of genes encoding several V-ATPase subunits, including isoforms for subunits 

A, B, C, G, c and c'', through TEFB transcription factor in both human cells and mice [58].  

Differential expression of subunit isoforms is another way of accomplishing regulation. A 

thorough recollection can be found in an excellent review published recently [40]. Thus, 

we will be only give a few hints here. In particular, subunit a isoforms dictate to a large 

extent the location of the full complex. In yeast, all subunits are encoded by single genes 

with the exception of subunit a. Assembled complex containing the isoform Vph1p are 

located exclusively to the vacuole, while those that include isoform Stv1p are found 

predominantly at the Golgi system and endosomes [59]. In humans, there exist four 

different isoforms for subunit a (a1 to a4). Isoform a1 is found predominantly in synaptic 

vesicles and nerve plasma membrane and is thought to be an important element to facilitate 
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membrane fusion between these two membrane systems [40]. Isoform a2 has been found 

in renal intracellular organelles while isoform a4 is found predominantly in plasma 

membrane-localized V-ATPases in these same cell types [40]. Subunit a3 is found also 

predominantly at the plasma membrane of osteoclasts, although it lies in intracellular 

compartments in non-resorbing cell precursors [60]. To date, the identity of the subunit a 

isoform that drives V-ATPases to acquire a plasma membrane location in tumour cells is 

largely unknown. However, an indication may come from breast cancer MB231 cells. In 

this system, subunits a3 and a4 have been found overexpressed but only the latter isoform 

seems to be responsible for these cells displaying V-ATPases at the plasma membrane 

[61]. 

As mentioned earlier, the stoichiometry of proton translocation is also affected by the 

subunit a isoform included in the holoenzyme. In yeast, Vph1p and Stv1p isoforms provide 

stoichiometries close to 2 and 1 H+/ATP, respectively, in line with the notion that smaller 

ratios of H+/ATP are thought to be helpful for a correct pH homeostasis in non-vacuolar 

yeast compartments [62]. Analogous to this, lemon-fruit vacuolar V-ATPase displays an 

apparently variable stoichiometry with an initial 2H+/ATP ratio that lowers to 1 H+/ATP 

when ΔpH increases across the vacuolar membrane, allowing it to translocate H+ 

effectively even in the presence of steep pH gradients [63]. However, the molecular 

mechanism for these catalytic changes is still unknown. Interestingly, in this same study, it 

was proposed that organic acids could serve as regulators of the V-ATPase improving 

H+/ATP coupling. So far, no studies have dealt with the influence of monocarboxylic acids 

on tumour cell V-ATPase H+ translocation.  

Other regulatory mechanisms may also contribute to fine tune V-ATPase function in a cell. 

For example, it has been described that reduction of disulfide bonds at subunit A are 
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needed for full ATPase activity [64] and that this process may well be at work in vivo [65]. 

Regulation of the number of pumps present in an organelle can also contribute to the 

control of acidification capacity. This  has been observed for epididymal plasma 

membrane ATPases [66], where V-ATPases have been observed to fluctuate between 

plasma membrane and endosomal compartments in a concerted manner depending on 

lumenal pH, cAMP and PKA [67]. Vtc chaperones have also been found to influence 

vacuolar H+-pumping through V-ATPases [68], but in this case a physiological role of Vtc 

complexes in regulating V-ATPase function as a response to environmental or 

physiological cues is less likely. Human securin (hPTTG1 gene) is a protein involved in 

the timely separation of chromatids at anaphase and in promoting proliferation in tumour 

cells [69]. Strikingly, it was also found to be associated to Golgi system and exocytic 

vesicles [70]. Very recently human securin has been proposed as a novel regulator of 

endosomal acidification and membrane traffic [71] apparently through a combination of 

regulation of V-ATPase V0/V1 reversible assembly and gene expression. 

Being V-ATPases membrane-embedded proteins, it is easy to understand that they may be 

affected by the lipid composition of the membrane. However, studies dealing with lipid-

protein interactions for this H+-pump have been few and apart. In any case, a clear 

influence of the lipid environment on V-ATPase functions is starting to emerge. 

Phospholipids and fatty acids have been shown to influence V-ATPase. In particular, 

inclusion of phosphatidylserine in the reconstitution liposomes results in greater ATPase 

activity in vitro [72]. More significantly, rats fed an oleic acid-enriched diet showed an 

accumulation of this fatty acid and a concomitant dramatic increase in both ATPase 

activity and in V1/V0 assembly ratio [73]. Despite lysosomes being sterol-poor organelles 

and endosomes displaying intermediate contents between ER and plasma membrane [74], 
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early studies showed that reconstitution of V-ATPase H+-pumping activity required the 

presence of cholesterol in the liposomes [75]. Related to this, the presence of abnormal 

sterols in the membrane have been shown to have deleterious effects for V-ATPases; for 

example, cellular accumulation of 14α-methylated sterol precursors inhibit fungal V-

ATPase activity [76, 77] and Δ8-unsaturated sterols alter V-ATPase stability (Hernandez, 

A., Lopez-Lluch, G., Serrano-Bueno, G., Perez-Catiñeira, J.R., Navas, P., Serrano, A., 

unpublished data). Sphingolipids are a class of lipids that are often associated to sterols in 

membranes and, along with them, represent the major components of lipid rafts and the 

related detergent resistant membranes (DRMs). Despite V1 being the cytoplasmic domain, 

C26-acyl group containing sphingolipids are necessary to generate ATPase-competent V1 

domains [78]. Other studies have corroborated genetically the importance of sphingolipids 

for V-ATPase function [79]. In mammals, luminal acidification of melanocyte trans-Golgi 

system and endo/lysosomes have been suggested to depend on glycosphingolipids, since a 

cell line devoid of glucosylceramide synthase presents defective luminal acidification [80]. 

Indeed, a regulatory function for lipids in vivo can be envisaged: membrane-bound V-

ATPase subunits were associated with DRMs isolated from late endosomes. Also, the 

V1/V0 assembly ratio varies along the endocytic pathway, the relative abundance of 

membrane-bound V1 being higher on late endosomes than on early endosomes. This 

situation is mimicked by the lipid-raft abundance and the luminal pH in these organelles 

[81]. 

 

CELL BIOLOGY OF V-ATPASE INHIBITION 

As it is easy to foresee, cellular events or processes that require strict or specific pH 

conditions, such as membrane fusion events, may be affected by a fault in V-ATPase H+-
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translocation function. Indeed, inhibition, or otherwise impairment, of H+-translocation by 

V-ATPases provokes a plethora of effects in the cell that, if severe and sustained enough, 

can lead to cell death. A brief overview is depicted on Fig. 3.  

In the context of carbohydrate metabolism, the enzyme fructose-1,6-bisphosphatase is a 

key regulator of gluconeogenesis that is receiving increasing attention in diabetes studies 

[82] . It was observed in yeast that this enzyme is degraded upon shift to glucose 

fermentation metabolism and that this process is V-ATPase dependent, at least after long 

oxidative phosphorylation conditions, since this degradation is done at the vacuole [83]. 

Also in a yeast model system, it was substantiated that vacuolar V-ATPases regulated 

cytosolic pH in concert with the plasma membrane P-type pump [84]. In a cellular breast 

cancer model, silencing of the major V-ATPase subunit a (a3) was also shown to result in 

impaired cytosolic pH homeostasis and a severe drop in invasiveness [61]. It must be 

noted, however, that a concomitant alkalinisation of lumina was also observed in this case, 

making it difficult to ascribe unambiguously the loss of invasive potential to a single 

effect. Examples of the influence of defective V-ATPase-mediated acidification of lumina 

are more abundant in the literature. For instance, impairment of membrane traffic: it was 

shown that yeast cells ablated for any V-ATPase activity missorted Pma1p, the plasma 

membrane P-type proton pump, to the vacuole and, as a consequence, could not alkalinise 

their cytosol in response to glucose [85, 86]. In mammalian cells, a change in 0.4 pH units 

at the Golgi system provokes the mislocalization of glycosyltransferases [14, 15]. A 

similar situation has been observed for secreted proteins like chromogranin [87].  

Another consequence of defective H+-translocation by V-ATPases is the impairement of 

autophagy. This process is intimately associated to cancer, although its exact role, either 

preventing cell death or as a mechanism for it, may differ with cancer type and conditions 
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[88]. It has recently been proposed that the Warburg effect and autophagy may be 

connected in solid tumours, where the core of the neoplasic tissue would be feeding the 

respiration-competent outer tumour cell layers with L-lactate and other nutrients generated 

through anaerobic glycolysis and autophagic degradation of core components [89]. In a 

very simplified view (Fig. 4), this process is characterised by the engulfment of cytosolic 

components and/or other organelles by a double membrane organelle, the phagophore. 

After full closure, the phagophore becomes a cargo loaded double-membrane vesicle, the 

phagosome, this later fuses with endosomes and finally with the lysosome and, after 

degradation of the inner autophagosomal membrane, releases its contents into the 

lysosomal lumen. The engulfed cargo is then degraded by lysosomal proteases and other 

hydrolases [90] . The involvement of the V-ATPase in this process was early observed 

[91] and, nowadays, inhibition of V-ATPase using bafilomycin A1 or concanamycin A is a 

standard assay to probe the involvement of autophagy in mammalian cells. The importance 

of V-ATPases in autophagy is not devoid of controversy, though. In agreement with the 

need of a low luminal pH for vacuole homotypic fusion events, mitophagy (a particular 

form of autophagy dealing with the degradation of whole mitochondria) was seen to be 

affected at the membrane fusion stages. Conversely, those same stages of Piecemeal 

Microautophagy of the Nucleus seems to be independent on V-ATPases [92]. Be that as it 

may, acidification of lysosomal lumen is agreed to be necessary for proteolytic degradation 

of autophagosomal cargo at the lysosome and, together with any effects on membrane 

fusion events, impairment of V-ATPase H+-transport is agreed to block autophagic flow at 

its late steps [93]. At any rate, autophagy is known to be a process that precedes, and thus 

prevents, apoptosis in many instances [94]. Consequently, reports abound on the apoptosis-

inducing effects of the inhibition of autophagy by any means (for example: [95-100]), 
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including the use of bafilomycin A1 (e.g. [101]). However, in this last case a point of 

caution must be exerted since bafilomycin A1 and other plecomacrolides have been seen to 

exert conflicting effects on autophagy and apoptosis induction in neurons depending on the 

concentration used [102]. No data are available on on other cell types or other V-ATPase 

inhibitors, but still the utilisation of plecomacrolides as potentiators of stress or drug-

induced apoptosis through inhibition of autophagy reveals itself as one of the most 

attractive potential uses for V-ATPase inhibiting compounds. 

Many of the chemotherapeutic drugs in present use are cationic molecules. As a 

consequence, they tend to get excluded from alkaline cytosols and accumulate into acidic 

compartments like the lysosome [103]. Not surprisingly then, cells that are able to 

maintain greater pH gradients in these compartments show a greater drug accumulation 

than normal cells [104] and cells showing a greater luminal acidification prowess are more 

chemoresistant than those that do not [105, 106]. Conversely, inhibition of V-ATPase 

activity leads to chemosensitivity [107, 108]. 

Other important effects are those related to iron uptake and Wnt/β-catenin signalling. 

Using global gene expression data Straud et al. found that the increased sensitivity to V-

ATPase inhibitors observed in cancer cells was correlated to their greater dependence on 

iron uptake, presumably to compensate their ROS production [109] . Wnt/ β-catenin 

pathway is an important tumourigenic signal in many cancer cell types, e.g. colorectal 

[110], and ovarian cancers [111]. It has recently been assessed that the Wnt receptor 

complex component LRP6 binds Prorenin receptor as an adaptor to bind V-ATPase. Upon 

activation, LRP6 gets endocytosed and phosphorylated in an acidic environment to become 

active. Furthermore, inhibiton of V-ATPase activity using bafilomycin A1 or apicularen 

prevented Wnt signalling [112]. 



17 

 

Cell cycle arrest is a common outcome of V-ATPase inhibition and often preceds cell 

death. S-phase arrest has been reported as a consequence of iejimalide A and B action 

[113], but in general, G1 arrest has been observed. Increased expression of the G1/M 

transition inhibitor p21 has been found in these cases [114-116]. However, the cellular 

mechanisms by which this occurs are not known in detail. In HT-29 colon cancer cells, 

p53 was stabilised following intracellular compartment alkalinization but p21 induction 

was partially p53 independent [114]. On the other hand, G1 arrest was observed to depend 

on inhibition of the degradation of hypoxia-inducible factor 1 (HIF-1) [116]. However, 

the actual mechanism integrating HIF-1 degradation and V-ATPase inhibition is still 

unknown. A hint for this may come from the fact that HIF-1 is a transcription factor that 

induces p21 expression under conditions of hypoxia but that it is kept at low levels under 

normal aeration conditions [117].  

In Hela cells, antisense experiments targeting c proteolipids induced necrosis [118]. 

However, cell death mechanisms related to V-ATPase inhibition in other reports is 

exclusively apoptosis so far [113, 119-123]. Most of these studies have been performed 

using plecomacrolides and, therefore, since there are no data yet for archazolids and 

indoles, and very few in the case of benzolactone enamides, differences may be found in 

future studies. In any case, apoptosis seems to follow the intrinsic pathway of through 

mitochondrial depolarization and liberation of cytochrome c to the cytosol in most 

cases[107, 119, 121] albeit, in EGFR overexpressing cancer cell lines, the extrinsic 

pathway of apoptosis has also been reported to play a decisive role through Fas/FasL in 

concanamycin B-induced cell death [124]. Anyhow, V-ATPase inhibition induced 

apoptosis is probably caspase-dependent in all cases [107, 119, 121]. 
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PHARMACOLOGICAL INHIBITORS OF V-ATPASES 

 

There is a vivid interest in the pharmacological intervention of V-ATPases, since this may 

prove helpful to understand a wide range of diseases, among which is cancer, but that also 

includes osteopetrosis and alzheimer's disease [125, 126]. As a consequence, the list of 

inhibitory compounds identified along the last 30 years is long and heterogeneous. We will 

only review here the most important types, with preference for those commercially 

available, and some strategies that may lead to new approaches towards V-ATPase activity 

regulation. Due to their particular nature, benzimidazole proton pump inhibitors deserve a 

detailed review and thus they will be dealt with in another review article in this issue [Ref 

de Milito]. A more comprehensive list and further details on these and other compounds 

are available in some excellent reviews [127-131].  

 

Plecomacrolides and Derivatives 

 

The first specific inhibitor described for V-ATPases was bafilomycin A1 [132], but 

concanamycin A was first reported that same year [133]. Both compounds are collectively 

known as plecomacrolides and consist of a large macrocyclic lactone ring comprising 16-

18 carbons. Their general structures are shown in Fig. 5. Originally isolated from several 

species of Streptomyces bacteria [129], the total synthesis of bafilomycin A1 was achieved 

in 1997 [134] and that of concanamycin (concanamycin F) in 2001 [135]. Although it is 

now well established that the binding site of both compounds lies on subunit c and that 

causes the inhibition of proton transport through this proteolipid [136], there were some 
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indications that bafilomycin A1 may also bind to subunit a [137] and these have been 

confirmed recently [138]. All of them are very potent inhibitors of V-ATPases with IC50 in 

the low nanomolar range. This makes them useful in research to distinguish between 

different types of ATPases in a cell, since P-type and F0F1-type ATPases are not inhibited 

at concentrations achieving full inhibition of V-ATPases. However, being proteolipid c 

one of the most conserved subunits across species and there being no isoforms in humans, 

the downside is that both bafilomycins and concanamycins lack specificity towards 

different forms of V-ATPases. 

Recently, an unexpected activity of bafilomycin A1 was uncovered: using mitochondria 

isolated from rat liver, bafilomycin A1, in a concentration range between 50 and 250 nM, 

was shown to transport potassium across the inner mitochondrial membrane in a manner 

resembling that of valinomycin, causing swelling and depolarisation independently of any 

inhibition of the F0F1 ATPase [139]. These concentrations are above those needed for 

inhibition of V-ATPases in vitro, but may be meaningful to understand the effects 

observed in in vivo assays. For example, this might help to understand some unresolved 

effects of plecomacrolides, such as the induction of the expression of hypoxia-inducible 

factor 1 (HSF-1) and p21 [115, 116]. Similarly, both concanamycin A and bafilomycin 

A1 have been shown to induce nitric oxide synthase, c-Jun N-terminal kinase and NF-B 

concomitant to mitochondrial swelling and depolarisation in RAW 264.7 leukemia cells 

[140]. 

Using the information obtained in structural studies of bafilomycins, a series of simpler 

compounds that were still able to inhibit V-ATPases were described in the late 1990's 

[141, 142]. These compounds consist of an indole core, hence its name “indoles” (Fig. 5). 

Similarly to plecomacrolides, these compounds also bind subunit c [143, 144]. However, 
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as in the case of the plecomacrolides, it was thought for some time that they may bind to 

subunit a, a situation that could help explaining their preferential inhibition of osteoclast 

V-ATPases, as opposed to other mammalian V-ATPases [141, 142, 145], but this 

hypothesis is now abandoned [146].  

 

Benzolactone Enamides 

 

Compounds sharing a benzolactone enamide core and a cytotoxic profile similar to that of 

plecomacrolides in NCI's 60-Cell screens [147] were identified by two independent groups 

in the late 1990's [148-150]. The first of this, salicylihalamide, was originally isolated from 

Haliclona sp sponges, lobatimides were from Aplidium lobatum tunicates, while 

apicularens were extracted from Chondromyces sp mixobacteria. This wide range of 

sources is probably misleading and chances are that they are all produced by symbiotic 

micro-organisms, most likely mixobacteria [147]. Chemical structures representative of 

this class of compounds are shown on Fig. 6. Total synthesis of these compounds were 

successfully reported a few years later [151-153] and several compounds showing 

similarities have been described, such as cruentaren, the oximidines or the closely related 

palmerolides. An excellent review on these latter compounds was published recently [129]. 

Also similar to plecomacrolides, benzolactone enamides are potent inhibitors of ATP-

dependent H+-translocation showing IC50s in the nanomolar range [129, 154], and bind to 

the V0 domain [136, 154]. However, the binding sites of salicylihalamide and lobatimide 

on the V-ATPase complex are probably different to that of plecomacrolides since the 

former cannot compete binding of the latter type of compounds [136, 154, 155]. 

Interestingly, benzolactone enamides have shown selectivity towards animal V-ATPases, 
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as opposed to their homologous fungal proton pumps [147, 155]. Nevertheless, no 

information is yet available on the exact subunit benzolactone enamides bind. 

 

Alternative Strategies 

 

The major drawback of traditional V-ATPase inhibitors is their lack of cell-type or tissue  

specificity. This comes from a common mechanism of action based at binding V0 domain 

subunits and, in most instances, specifically on the highly conserved c subunit [136, 146, 

154]. Thus, their potential use in cancer chemotherapy is hindered. However, there are 

alternative approaches and molecules that may give some hope. The development of 

systemic delivery methods for gene silencing in vivo may pave the way to effective cancer 

treatment, and this strategy is already being tested for other targets in several types of 

cancer [156]. Gene silencing constructs against tumour-characteristic V-ATPase subunits, 

either delivered systemically or locally, could be effective at circumventing specificity 

issues. At any rate, silencing of single subunits in cell culture models have demonstrated 

its use to reduce tumour cell invasiveness in breast cancer [61]. Moreover, silencing of 

subunit c gene ATP6V0C inhibited dramatically the proliferation and metastatic potential 

of HCCLM3 xenografts in mice liver, albeit gene silencing only reduced expression to 

60% of untreated controls [157]. 

Lipid modulation of V-ATPase activity may provide another alternative way for 

chemotherapeutic intervention. Cancer cells display dramatically increased rates of fatty 

acid synthesis [158], cholesterol uptake and synthesis [159] and dysregulated sphingolipid 

metabolism [160]. This makes them susceptible to pharmacological intervention and its the 

basis of many efforts and proposals (e.g. [161, 162]). Inhibition of any lipid synthesis is 
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inherently pleiotropic; however, from what we have seen above, both sphingolipids and 

sterols seem to be paramount for V-ATPase function [76-79] and own unpublished 

results]. Moreover, abnormal sterol-mediated inhibition of lumenal acidification may well 

lie at the basis of azole fungicide efficacy [77]. Therefore, administration of sphingolipid 

or cholesterol analogues may lead to effective inhibition of V-ATPases. Sphingolipid 

analogues have been tested in cancer models with cytotoxic results in brain, prostate and 

breast cancer. However, these studies did not evaluate the possibility of an induced V-

ATPase dysfunction [160]. LDL receptor-mediated cholesterol uptake mechanisms are 

used to deliver sterol-conjugated compounds into the cell successfully [163]. In addition, 

tumour cells display a dramatic increase in LDL receptors and cholesterol uptake that can 

reach even 100-fold of that found in normal cells [164]. This could be used to increase the 

specificity of V-ATPase inhibition in cancer cells. Indeed several sterol analogues have 

been reported to inhibit V-ATPases in vitro, for example the well known antibiotic fusidic 

acid [165] and the marine sponge metabolites adociasulfates-1, -7 and -8 [166]. 

Nevertheless, no in vivo data are available yet. 

 

CONCLUDING REMARKS 

 

The control of cell proliferation through targeting lumenal, cytosolic and/or extracellular 

pH homeostasis is a strategy that is receiving increasing attention by the scientific 

community and may well prove helpful in the control of cancer progression if sufficient 

effort is put in developing appropriate small molecules. Compounds active against V-

ATPases raise a great interest, as judged by the number of preclinical tests published and 

the fair amount of patents issued [167]. However, V-ATPase inhibitors still face a 
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tremendous challenge to be succesful: their high toxicity. In this sense, inhibition of V-

ATPases in pancreas has been proposed to be responsible of increased risk of suffering 

induced glucose intolerance [168]. Therefore, studies on new derivatives are paramount, 

specially from those compounds that already show some kind of specificity. Alternatively, 

the search for new ways to inhibit V-ATPases, making use of different approaches (e.g. by 

targeting subunit a or by gene silencing) or properties of these proteins that have received 

little attention, like their sensitivity to the lipid environment, may be instrumental in 

regulating V-ATPases, and hence cell proliferation, in the future. 
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Figure Legends 

 

Fig. (1). Intracellular compartments and their internal characteristic pH values. Vesicle 

flux between single membrane organelles is shown by arrows. 

 

Fig. (2). Subunit structure of V-ATPases. Subunits in capital letters constitute the 

hydrophilic V1 domain; subunits in small letters comprise the V0 membrane-embedded 

domain. Asterisks denote the two hemi-channels involved in proton transport. 

 

Fig. (3). Cellular consequences of V-ATPase activity inhibition. Arrow heads indicate 

increase in response while blunt ends indicate diminution in the response. 

 

Fig. (4). Schematic representation of the (macro)autophagic process and autophagosome 

maturation.  

 

Fig. (5). Chemical structure of plecomacrolides and derivatives. A, bafilomycin A; B, 

concanamycin A; C, SB242784 (an indole). 

 

Fig. (6). Chemical structure of benzolactone enamides. A, salicylihalimide A; B, 

lobatamide A; C, apicularen A. 
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