36,338 research outputs found

    Production of large-particle-size monodisperse latexes

    Get PDF
    The research program achieved two objectives: (1) it has refined and extended the experimental techniques for preparing monodisperse latexes in quantity on the ground up to a particle diameter of 10 microns; and (2) it has demonstrated that a microgravity environment can be used to grow monodisperse latexes to larger sizes, where the limitations in size have yet to be defined. The experimental development of the monodisperse latex reactor (MLR) and the seeded emulsion polymerizations carried out in the laboratory prototype of the flight hardware, as a function of the operational parameters is discussed. The emphasis is directed towards the measurement, interpretation, and modeling of the kinetics of seeded emulsion polymerization and successive seeded emulsion polymerization. The recipe development of seeded emulsion polymerization as a function of particle size is discussed. The equilibrium swelling of latex particles with monomers was investigated both theoretically and experimentally. Extensive studies are reported on both the type and concentration of initiators, surfactants, and inhibitors, which eventually led to the development of the flight recipes. The experimental results of the flight experiments are discussed, as well as the experimental development of inhibition of seeded emulsion polymerization in terms of time of inhibition and the effect of inhibitors on the kinetics of polymerization

    Fine-tuning of process conditions to improve product uniformity of polystyrene particles used for wind tunnel velocimetry

    Get PDF
    Monodisperse polymer particles (having uniform diameter) were used for the last two decades in physical, biological, and chemical sciences. In NASA Langley Research Center monodisperse polystyrene particles are used in wind tunnel laser velocimeters. These polystyrene (PS) particles in latex form were formulated at the Engineering Laboratory of FENGD using emulsion-free emulsion polymerization. Monodisperse PS latices particles having different particle diameters were formulated and useful experimental data involving effects of process conditions on particle size were accumulated. However, similar process conditions and chemical recipes for polymerization of styrene monomer have often yielded monodisperse particles having varying diameters. The purpose was to improve the PS latex product uniformity by fine-tuning the process parameters based on the knowledge of suspension and emulsion polymerization

    A Carbocation Substituted Clay and its Styrene nanocomposite

    Get PDF
    A substituted tropylium ion can be ion-exchanged onto montmorillonite to give a novel organically-modified clay. One can prepare a polystyrene nanocomposite of this clay by emulsion, but not bulk, polymerization. This is the first example of a clay that contains a carbocation and its use to prepare a polymer-clay nanocomposite. Both the clay and its nanocomposites exhibit outstanding thermal stability. Characterization by X-ray diffraction, transmission electron microscopy, cone calorimetry, thermogravimetric analysis and the evaluation of mechanical properties shows that a mixed intercalated-exfoliated nanocomposite is obtained

    Highly permeable macroporous polymers synthesized from pickering medium and high internal phase emulsion templates

    Get PDF
    Open porous poly-Plckerlng-M/HIPEs with permeabilities of up to 2.6 D were prepared by polymerisation of PickeringM/HIPEs to which small amounts of surfactant were added. The permeability of these poly-Pickering-M/HIPEs is more than 5 times that of conventional polyHI PEs. This approach allows the synthesis of a novel class of permeable particle reinforced macroporous polymers with significant potential for practical exploitation. (Figure Presented) © 2010 WILEY-VCH VerlagGmbH S.Co. KCaA, Weinheim

    Controlling the Morphology of Composite Latex Particles

    Get PDF

    High surface area, emulsion-templated carbon foams by activation of polyHIPEs derived from Pickering emulsions.

    Get PDF
    Carbon foams displaying hierarchical porosity and excellent surface areas of >1400 m2/g can be produced by the activation of macroporous poly(divinylbenzene). Poly(divinylbenzene) was synthesized from the polymerization of the continuous, but minority, phase of a simple high internal phase Pickering emulsion. By the addition of KOH, chemical activation of the materials is induced during carbonization, producing Pickering-emulsion templated carbon foams, or carboHIPEs, with tailorable macropore diameters and surface areas almost triple that of those previously reported. The retention of the customizable, macroporous open-cell structure of the poly(divinylbenzene) precursor and the production of a large degree of microporosity during activation leads to tailorable carboHIPEs with excellent surface areas
    corecore