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Abstract: Carbon foams displaying hierarchical porosity and excellent surface areas of >1400 m2/g
can be produced by the activation of macroporous poly(divinylbenzene). Poly(divinylbenzene) was
synthesized from the polymerization of the continuous, but minority, phase of a simple high internal
phase Pickering emulsion. By the addition of KOH, chemical activation of the materials is induced
during carbonization, producing Pickering-emulsion-templated carbon foams, or carboHIPEs,
with tailorable macropore diameters and surface areas almost triple that of those previously reported.
The retention of the customizable, macroporous open-cell structure of the poly(divinylbenzene)
precursor and the production of a large degree of microporosity during activation leads to tailorable
carboHIPEs with excellent surface areas.

Keywords: carbon; polyHIPE; carboHIPE; Pickering emulsion; carbonization; microporous;
emulsion template

1. Introduction

Carbonaceous materials possessing hierarchical porosity are desirable owing to a number of
advantageous properties, one such example being the coupling of effective mass transfer through
macropores and large surface areas derived from both meso- and micropores. High surface areas
allow for a large degree of solid-liquid interactions, while effective mass transfer permits rapid access
to this surface area throughout the material. More generally, carbonaceous materials are studied
prolifically due to their relative chemical inertness and high thermal stability, which has resulted in
their consideration as adsorbents [1] or catalyst supports [2], in gas sorption [3], and as electrodes in
both Li-ion batteries [4] and double-layer capacitors [5].

The requirement for well-defined porosity within carbon structures has led to the utilization
of a range of different precursor materials including carbides [6,7], synthetic organic polymers [8,9],
and templated materials [10,11]. One attractive route to hierarchically porous carbon foams is via the
carbonization of macroporous polymers templated from high internal phase emulsions (HIPEs).
A HIPE is defined as an emulsion containing an internal phase that comprises >74.05% of the
total volume of the system, the maximum volume that uniform spheres can close pack without
deformation [12]. Polymers are produced from these templates by the polymerization of the continuous,
but minority, phase of a HIPE to produce a polyHIPE. Aside from the influence of phase volume
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ratio and the emulsification method, a great degree of control over the structural properties of a
polyHIPE’s macropores is possible simply by varying the choice of emulsion stabilizer in the initial
HIPE template. HIPEs are commonly stabilized using standard molecular surfactants, which upon
polymerization produce open-cell polyHIPEs, meaning that the polymers contain pore throats which
connect the emulsion-templated macropores, producing a more permeable structure. On the other
hand, particle-stabilized emulsions, also known as Pickering emulsions, are stabilized by larger
particles irreversibly adsorbing at the interface of emulsion [13,14]. Upon polymerization of Pickering
HIPEs, closed-cell polyHIPEs containing no pore throats and macropores with larger diameters than
those of the surfactant systems are produced [15,16]. However, it was demonstrated by Wong et al. that
open-cell polyHIPEs could be produced from Pickering HIPEs via the addition of a small amount of a
standard molecular surfactant prior to polymerization, introducing pore throats into Pickering-HIPE
derived polyHIPEs [17].

When a charable polyHIPE is produced, it can be used as a precursor to porous carbon
foams, or carboHIPEs, which retain the emulsion-templated macroporosity of the polyHIPE while
developing micro- and mesopores upon carbonization, creating hierarchical porosity. The production
of carboHIPEs has been described in the literature from a wide variety of starting materials, some of
which include sulfonated poly(styrene-co-divinylbenzene) [18,19], Kraft black liquor [20], lignin [21],
tannins [22], and polyacrylonitrile [23]. Recently, we described the production of carboHIPEs from
poly(divinylbenzene)HIPEs synthesized from simple Pickering water-in-divinylbenzene (DVB) HIPE
templates [24]. Carbonization of these templates gave carboHIPEs in good yields, retaining the
emulsion-templated porosity of the poly(DVB)HIPE precursor and producing surface areas of up
to 500 m2/g. Pickering HIPEs have also been used to create carboHIPEs by producing sacrificial molds
in the form of mesoporous macrocellular silica foams [25]. These Si(HIPE)s were infiltrated with a
carbon precursor, carbonized, and washed in HF to produce carboHIPEs with surface areas of up
to 900 m2/g.

In order to try to improve the surface area of carbonaceous materials in general, varying methods
of activation have been employed. One method involves the addition of activating agents to charable
materials to try to increase the surface area of the resulting carbon by chemical activation during
heating. Another involves the carbonization of materials in atmospheres containing small amounts
of CO2 or H2O in order to induce physical activation of the materials. The literature is rich with
studies on activation processes, with one of the most popular involving the addition of the chemical
activating agent, KOH, to a material prior to carbonization [26]. Previous reports indicate that increases
in porosity and surface area brought about by KOH-activation is due to a number of factors including
chemical activation by etching of the carbon framework, physical activation by the gasification of
the carbon, and carbon lattice expansion by the production of metallic K throughout the carbon
framework [26–29]. It has been demonstrated that the activation of templated mesoporous carbons
with well-controlled pore-size distributions led to huge increases in both surface area and total pore
volumes by the production of micropores [30,31].

Herein, we report the synthesis of high-surface-area, hierarchically porous carboHIPEs
by KOH-activation of poly(DVB) derived from Pickering HIPEs. The successful retention of
emulsion-templated macroporosity during activation allows for carboHIPEs with almost triple the
surface area of their non-activated (simply carbonized) equivalents. A combination of both silica
particles and a small amount of standard molecular surfactant were used in order to create open-cell,
charable structures. This increase in surface area, coupled with customizable macropore diameters,
opens up opportunities to produce tailorable carboHIPEs with excellent surface areas.
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2. Experimental

2.1. Materials

Calcium chloride (CaCl2), divinylbenzene (DVB, 80% containing inhibitor), azobisisobutyronitrile
(AIBN), and potassium hydroxide (KOH) were all purchased from Sigma-Aldrich (Dorset, UK) and
used as received. Hydrophobic silica particles (HDK grade H20) were kindly provided by Wacker
Chemie (Bracknell, UK), and Hypermer 2296 was kindly provided by Croda (Leek, UK). Both products
were used as received. Silver paint used for SEM imaging was purchased from Agar Scientific
(Stansted, UK).

2.2. Preparation of HIPEs and Subsequent poly(DVB)HIPEs

The synthesis of poly(DVB)HIPEs from Pickering water-in-DVB HIPEs has been described
previously [24]. For a typical formulation, hydrophobic silica particles (120 mg, 3 wt %) were added to
DVB (4 mL), and the sample was shaken by hand for ~5 min until the particles were well dispersed in
the monomer. AIBN (1 mol % with respect to the monomer, 47 mg) was then added and the mixture
stirred using a vortex mixture ((VortexGenie 2, Scientific Industries, Bohemia, NY, USA), speed setting
‘3’, equating to roughly 600 rpm) before an aqueous CaCl2 solution (10 g/L, 16 mL) was added slowly
over 20 min while still stirring using the vortex mixer at the same speed setting. After the addition of
the aqueous phase was complete, the HIPE was stirred more vigorously (speed setting ‘10’, roughly
3000 rpm) for a further 5 min before the surfactant Hypermer 2296 (0.2 mL, 5 vol %) (Croda, UK) was
added with respect to the initial monomeric phase, after which the HIPE was gently agitated by hand
for 10 s. To create poly(DVB)HIPEs with smaller macropores, the HIPE was stirred at either 1000 rpm
or 3000 rpm for 10 s at this point in the process, in place of gentle agitation by hand. HIPEs were then
transferred into a 15 mL free standing polypropylene centrifuge (Falcon) tube (VWR, Radnor, PA, USA)
and heated at 70 ◦C for 24 h in a convection oven to initiate polymerization. After polymerization, the
Falcon tube containing the polyHIPE was cut into roughly 1 cm3 cylinders using a band saw before
the polyHIPE was removed from the tubes and washed three times in an ethanol bath for a total of at
least 6 h. The cylinders were then dried in a vacuum oven at 110 ◦C overnight.

2.3. Preparation of carboHIPEs and Activated carboHIPEs

Samples of poly(DVB)HIPE were prepared for either carbonization or carbonization in the
presence of a chemical activator. All samples were weighed before heating to 800 ◦C under a N2

atmosphere at a ramp rate of 2 ◦C/min. Once 800 ◦C was reached, samples were held at this
temperature for 1 h before the furnace was allowed to cool to room temperature overnight (remaining
under a N2 atmosphere). Samples being prepared for chemical activation were also weighed before
being soaked in an aqueous KOH solution (either a 10 wt % or a 30 wt % solution), after which they
were carefully removed and placed in a convection oven at 70 ◦C to dry overnight. After drying,
samples were weighed again to determine how much KOH was deposited before being placed in the
furnace and carbonized using the same process as the non-activated carboHIPEs. When investigating
tailored average macropore diameters in activated carboHIPEs, all poly(DVB)HIPEs were immersed in
a 30 wt % KOH solution before subsequent drying and carbonization as described above.

2.4. Characterization

Gas sorption analyses were performed on a Micromeritics 3Flex Surface Characterization Analyzer
(Micromeritics, Atlanta, GA, USA) at −196 ◦C. Samples were degassed in situ under vacuum
(around 0.0030 mbar) at 150 ◦C for at least 4 h, prior to measurement. SEM images were either
taken on a variable pressure SEM (JEOL JSM 5610 LV (0.5–35 kV), Tokyo, Japan) or, in the case of the
high-resolution SEM, images were taken using a high-resolution field emission gun SEM (FEGSEM
(5 kV, InLens detector)) (Leo Gemini 1525 coupled with a SmartSEM software interface, Carl Zeiss NTS
Ltd., Cambridge, UK). All polyHIPE samples were fixed on Al stubs (Agar Scientific Ltd., Stansted,
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UK) using carbon tape to attach samples securely. The stubs were then sputtered with chromium
(10 nm) and, taking care not to contaminate the sample, a small amount of silver DAG paint was
used to provide a conductive bridge between the carbon tape and the Al stub. Image analysis,
such as measuring the average macropore diameter of polyHIPEs, was carried out using the image
software ImageJ (version 1.48, National Institutes of Health, Bethesda, MD, USA) [32]. The percentage
porosity (P) was determined from both the envelope (ρe) and skeletal density (ρs) via the equation
P = (1 − ρe/ρs) × 100%.

2.5. Research and Discussion

Water-in-DVB emulsions were prepared using a combination of silica particles and standard
molecular surfactants as stabilizers. The use of the Pickering emulsifiers was crucial as we previously
demonstrated that poly(DVB)HIPEs derived from solely surfactant-stabilized HIPEs did not survive
carbonization [24]. After curing the emulsions for 24 h at 70 ◦C, all white poly(DVB)HIPEs were
produced (Figure 1a), which displayed emulsion-templated macroporosity with an average diameter
of 82 µm (Table 1), in a similar range to other polyHIPEs produced from Pickering HIPEs [16,33].
As a mixed surfactant system was used, pore throats were created in the resulting poly(DVB)HIPE,
producing the desired open-cell structure (Figure 1b). Poly(DVB)HIPEs were carbonized at 800 ◦C
in an inert N2 atmosphere and yielded carbon foams, or carboHIPEs (Figure 1a). The carboHIPEs
retained the cylindrical shape of poly(DVB)HIPE precursors well, albeit with a significant volume loss
of between 73% and 76%. The emulsion-templated macropores also survived carbonization to yield an
open-cell carboHIPE, showing a decrease in their average diameter of 20 µm to 62 µm. (Figure 1c).
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Figure 1. (a) Photograph of a poly(DVB)HIPE, carboHIPE, and a carboHIPE-Act30; (b–d) SEM images
of a poly(DVB)HIPE, carboHIPE, and a carboHIPE-Act30, respectively. The scale bar in the photograph
represents 2 mm.
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Table 1. Macropore diameter, BET surface area, micropore volume, total pore volume, porosity, and
char yield of a poly(DVB)HIPE, a carboHIPE, and activated carboHIPEs.

Sample
Average

Macropore
Diameter (µm) a

Surface Area
(m2/g) b

Micropore
vol. (cm3/g) b

Total Pore vol.
(g/cm3) b

Porosity
(%) c

Char Yield
(%) d

poly(DVB)HIPE 82 ± 42 8 0 0.021 86 N/A
carboHIPE 62 ± 28 521 0.268 0.223 95 22

carboHIPE-Act10 72 ± 26 1123 0.432 0.572 97 13
carboHIPE-Act30 74 ± 30 1456 0.554 0.791 97 12

a Measured using image analysis software; b Calculated from N2 sorption isotherms at 77 K; c Calculated using
both the skeletal and envelope density of monoliths and d Mass yield after carbonization, relative to original
poly(DVB)HIPE.

Varying levels of activation of poly(DVB)HIPEs were achieved by submerging poly(DVB)HIPEs
in KOH solution of varying concentrations for two hours under gentle agitation, prior to carbonization.
The poly(DVB)HIPEs were then dried in an oven and carbonized in a similar procedure to the
non-activated carboHIPEs. Activated materials will be denoted by the concentration of the KOH
solution in which they were submerged; for example, in carboHIPE-Act10, the ‘Act’ refers to
activation and ‘10’ indicates that the poly(DVB)HIPE precursor was exposed to a 10 wt % KOH
solution. Activation of poly(DVB)HIPEs appeared to lead to slightly larger carboHIPEs than simple
carbonization, with volume losses in activated materials ranging between 50% and 61% (Figure 1a),
although this was admittedly hard to quantify in many samples due to the more irregular shapes
and slightly more brittle nature of activated materials. The higher retention in volume may be
due to the increased evolution of gas exerting outward pressure on structures during activation,
or intercalated K in the carbon framework preventing further collapse. The emulsion-templated
macropores were successfully retained during activation (Figure 1d) and showed a slightly reduced
average macropore diameter of 74 µm for carboHIPE-Act30, in good agreement with the reduced
volume loss in comparison to simple carbonization in the absence of KOH. In order to demonstrate
the tailoring of macropore size in activated carboHIPEs, standard water-in-DVB HIPEs were stirred
at varied rates after the addition of the Hypermer 2296 surfactant, prior to curing and activation.
The samples were either gently agitated by hand (as is the case in the standard procedure), or stirred
for 10 s at 1000 rpm or 3000 rpm using a vortex mixer. Average macropore diameters of 74 ± 30 µm,
18 ± 5 µm, and 11 ± 4 µm were obtained for the standard carboHIPE-Act30, and those stirred
at 1000 and 3000 rpm, respectively (Figure 2), demonstrating controllable macropore size in
activated carboHIPEs.
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Figure 2. SEM images of various carboHIPE-Act30s with different average macropore diameters,
produced by stirring the HIPEs at different speeds prior to polymerization. (a) Gently agitated by hand;
(b) 1000 rpm for 10 s on a vortex mixer; and (c) 3000 rpm for 10 s on a vortex mixer.

Gas sorption analysis was performed on samples, applying the BET model for surface area
measurements and determining the micropore volume using the t-plot method. The native
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poly(DVB)HIPE had a low surface area of 8 m2/g due to the presence of some mesoporosity within
the structure [24,34]. All surface areas showed huge increases upon carbonization or activation,
with nitrogen adsorption displaying a type I isotherm in all cases (Figure 3a), with a steep N2

uptake at low pressures, indicative of a predominantly microporous structure, as outlined by IUPAC
classification [35]. The surface areas of carboHIPEs increased significantly with the addition of
KOH prior to carbonization (Table 1), producing excellent surface areas of up to 1456 m2/g for
carboHIPE-Act30. Both the total pore volume and the micropore volume also improved dramatically
upon carbonization or activation, increasing from no notable microporosity in the poly(DVB)HIPE to an
excellent micropore volume of 0.544 cm3/g and a total pore volume of 0.791 cm3/g in carboHIPE-Act30.
Pore size distributions show this increase in micropore volume with a large peak at ~5 Å after
both carbonization and activation, with activated samples appearing significantly more microporous
(Figure 3b). By increasing the concentration of the initial KOH solution used to deposit the activating
agent, both the surface area and the micropore volume could significantly increase (Figure 3, Table 1)
without any significant structural damage occurring to the emulsion-templated macropores (Figure 1,
Table 1).
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In order to further investigate the effect of the activating agent on the emulsion-templated structure
and what may lead to the large increases in surface area, high magnification SEM was performed. When
no activation agent was used during carbonization, the surface of the carboHIPE looked relatively
smooth and unbroken with the exception of the pore throats in the images (Figure 4a,b). However, in
carboHIPE-Act30, the surface was cracked and appeared more damaged after activation in comparison
to carbonization with no KOH (Figure 4c,d). Considering the high magnification images of both the
carboHIPE and carboHIPE-Act30, a much more porous structure is observed for the latter (Figure 4),
with the visible pores mainly in the macropore region (>50 nm in diameter). This newly formed porous
structure may allow better access to the increased amount of micropores throughout the structure,
resulting in much higher surface areas.

Lastly, the degree of graphitization between samples was probed using Raman spectroscopy
(Figure 5). It is clear from the spectra that carbonization/activation led to the formation of D and
G modes (1350 cm−1 and 1582 cm−1, respectively) and the loss of the typical fine structure of the
poly(DVB)HIPE in the Raman spectrum [36]. The formation of these broad D and G peaks is indicative
of disordered graphitic carbonaceous structures [37], typical for carbonization at relatively low



Materials 2016, 9, 776 7 of 10

temperatures [38]. The D to G peak intensity ratio is around 0.9 for all samples, suggesting that
the degree of graphitization is independent of the degree of activation in the carboHIPEs.
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Figure 5. Raman spectroscopy of a poly(DVB)HIPE, a carboHIPE, and activated carboHIPEs.

3. Conclusions

By simple immersion and subsequent drying of Pickering-emulsion derived poly(DVB)HIPEs
in inexpensive KOH solutions, carboHIPEs containing hierarchical porosity and surface areas of up
to 1456 m2/g were easily produced upon carbonization. This addition of this simple step almost triples
both the resulting surface area and micropore volume of carboHIPEs in comparison to poly(DVB)HIPEs



Materials 2016, 9, 776 8 of 10

carbonized in the presence of no activating agent. The degree of microporosity was controlled by
varying the amount of KOH present during carbonization. The activation process was not detrimental
to the emulsion-templated porosity of the poly(DVB)HIPEs, and it was demonstrated that the size of
the macropores could also be dictated in activated carboHIPEs by controlling the amount of energy
input after the addition of the standard surfactant. The retention of the macropores along with the
production of large micropore volumes opens up potential for efficient mass transfer of electrolytes
to the increased surface areas of these carbon foams, meaning they may have potential as novel
monolithic electrodes in supercapacitor devices and will be investigated further. The tunable porosity
of these materials on both the macro- and the micropore scale could also lead to their use as efficient
adsorbents for the removal of organic pollutants, or as high surface area catalyst supports.
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