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research article 

Controlling the Morphology of Composite Latex Particles 

 

—Douglas Holmes 

Latex plays an important role in many common products such as household paints, surgical gloves, various 

adhesives, coatings, and shock absorbent materials.  A latex is a type of polymer, which is a large molecule 

made up of thousands (or even millions) of small molecules, called monomers, attached in a long chain.  The 

chemical process by which these polymers are made is known as polymerization.  Latex particles are unique in 

that the polymer chains polymerize to form particles in water, where most other polymers exist as independent 

chains in different solvents but rarely in water.  Many different factors play a role in the polymer's final 

properties, and it is of great importance to manufacturers to be able to control these properties.  With a latex, 

many of these properties are controlled by how two or more different types of polymers arrange themselves 

inside the particles; this arrangement is known as the particle's morphology.  Being able to control the particle's 

morphology is important to the product's final properties; however, how to have this control is still not well 

understood.  This project was designed to investigate one of the ways of controlling the particle's morphology. 

We hope that this investigation will help improve our ability to predict and direct latex particle morphologies in 

the future. 

One way to control the particle's morphology is to change the glass transition temperature of one of the 

polymers in the particles.  This is where I focused my research.  The glass transition temperature (Tg) is a 

property somewhat unique to polymers, but is similar to properties like a melting or a boiling temperature.  

Polymers don't crystallize like liquid water does into ice; instead, they go from a rubbery phase to a glassy 

phase.  For instance, the rubber that makes up your car tires is a polymer that is above its glass transition 

temperature at room temperature and, therefore, is rubbery; while the plastic  used in soda bottles is below  its 

glass transition temperature at room temperature and is, therefore, hard and brittle.   

In my experiments I polymerized two different polymers within the same latex particles to form a composite 

latex particle.  To control the composite latex particle's morphologies, I varied the glass transition temperature 

of the second polymer, or second stage, while keeping the glass transition temperature of the first polymer, or 

seed latex, constant.  I kept my seed latex with a constant Tg while varying the second stage polymer's Tg.  

Previous studies had been done doing just the opposite, that is, varying the seed latex Tg while keeping the 

second stage polymer's Tg constant. I also kept the temperature at which the polymerization was performed 

constant.  This meant that, in some experiments, the reaction temperature was above the second stage polymer's 

glass transition temperature so the polymer was soft. In other experiments, when the reaction temperature was 

below the second stage polymer's Tg, the polymer was hard.  We believed that this property of the hardness or 

softness of the second stage polymer  plays a large role in controlling the final composite latex particle 

morphology.  

Another important factor in these experiments was that the polymerization was done in water. The seed latex 

used was hydrophilic (water-loving) and, therefore, wanted to be in contact with water; while the second stage 



polymer was hydrophobic (water-fearing) and did not want to be in contact with the water.  This means that if 

both the seed latex and the second stage latex were very soft (making them very mobile), then the second stage 

polymer would form on the inside of the particle and the seed latex would form on the outside. 

One of the techniques we used to investigate the morphology of the composite latex particles formed was 

Transmission Electron Microscopy (TEM).  The resulting images showed that, when the second stage polymer 

was hard, it formed a "core-shell" morphology on the outside of the polymer because it was too immobile to 

penetrate the seed latex or move around on the surface.  The most interesting results came when the second 

stage polymer was very soft and mobile.  Since the seed latex was still hard, the second stage polymer couldn't 

penetrate it; but because it was mobile, it was able to move around on the surface of the particle to form lobes.  

The reason it does this is because these lobes allow for more of the hydrophilic polymer to be in contact with 

the water and less of the hydrophobic one.  These results gave us a better understanding of what controls latex 

particle morphology and will help industry better control their polymer systems to produce polymers with the 

properties they want.  

Emulsion Polymerization   

Emulsion polymerization is a special type of polymerization process in which the end result is a stable aqueous 

dispersion of polymer particles, typically 50-500nm in diameter.  The simplest recipe for this involves water, 

monomer, initiator, surfactant (soap), and a pH buffer (baking soda).  The surfactant molecules have a 

hydrophilic end and a hydrophobic end. Since they are in water, many surfactant molecules get together and 

form small spheres with the hydrophilic ends on the outside, in contact with the water, and the hydrophobic 

ends on the inside, protected from the water.  These spheres of surfactant molecules are known as micelles.  

Since the monomer being added is also hydrophobic, it forms inside the micelles with the other hydrophobic 

molecules.  The initiator being used thermally dissociates into free radicals,  lone electrons that are very 

reactive.  These radicals begin propagating by adding monomer units in the water phase until they reach a 

certain length, z, at which they become surface active.  Once the radicals reach this length, the z-mers enter the 

micelles and continue the free radical polymerization, which results in the nucleation of a polymer particle.  

Polymerization results in the formation of a new particle phase, which is made up of both monomer and 

polymer, and is stabilized by surfactant.  An example of a latex particle being stabilized by surfactant molecules 

is  Figure 1. 

 

Figure 1. Surfactant molecules stabilizing a latex particle 

To have better control of the final latex particle size and 

distribution, a seeded emulsion polymerization with a 

previously prepared seed latex is used.  Once the seed latex is 

formed, it can be used in second stage polymerizations (1) to 

form composite latex particles by polymerizing a second 

monomer, different from the seed polymer, or (2) simply to 

grow larger particles by polymerizing the same monomer.  Figure 2 shows how a composite latex particle can 

form its final morphology in a seeded emulsion polymerization.   

 

Figure 2. How a composite latex 

particle forms from the initial seed 

particle 

 



 

Thermodynamic and Kinetic Effects on Particle Morphology 

Controlling the final morphology of composite latex particles is of prime importance to industry since their 

product's properties largely depend upon this morphology, that is, the arrangement of the polymers within the 

particle.  Various types of morphologies have been identified, such as core-shell, inverted core-shell, core-shell 

with internal occlusions, hemispheres, sandwich structures, and raspberry-like structures.  Figure 3 shows 

examples of these structures. 

Figure 3. Thermodynamically vs. Kinetically controlled 

morphologies. 

Particle morphology will be determined by either 

thermodynamic or kinetic factors, depending on the 

polymerization conditions (1,2).  Thermodynamic control 

means that the molecules want to minimize their overall 

energies, such as surface energy and energy from 

molecular interactions.  This desire for to minimize the 

system's free energy often, but not always, results in the 

more hydrophilic, or polar, polymer forming on the 

outside of the particle, which keeps it in contact with the 

water.  If the reaction temperature is well above the Tg of 

the polar seed latex, then the particles are soft.  This 

allows the nonpolar second stage polymer to penetrate more deeply into the particle, thus increasing the 

likelihood of forming the equilibrium morphology.  Nonequilibrium conditions often occur when the diffusion 

rate of radicals into particles, the phase separation, and the rearrangement of the polymer chains are slow 

compared to the rate of polymerization. The development of morphology is, then, kinetically controlled.  

Nonequilibrium morphologies are most likely to occur when the Tg of at least one of the polymers is close to or 

above the reaction temperature, and the monomer is fed slowly throughout the second stage polymerization.  

These conditions make for an extremely high viscosity within the seed particles which, in turn, makes it 

difficult for the two polymer phases to rearrange themselves into their thermodynamically favorable, or 

equilibrium, morphology.   

Effect of the Entering Radical's Mobility on Particle Morphology 

The nonequilibrium particle morphology of composite latex particles is very dependent on the mobility of the 

entering oligomeric radical.  (An oligomer is a chain of monomer units, not long enough to be considered a 

polymer.)  Oligomeric radicals enter from the water phase and then must diffuse, or penetrate, into the 

particles.  If their diffusion rate, or mobility, is limited, the second stage polymer will form on the outside of the 

particle, making a core-shell morphology more likely.  The extent of the radical's mobility is dependent on the 

relationship between the reaction temperature (Tr) and the seed polymer Tg.  Previous studies had examined the 

relationship between the two properties by changing the Tg of the seed latex while keeping the Tg of the second 

stage polymer constant.  These studies helped to provide a better understanding of the relationship between the 

seed Tg and the Tr and its effect on the ability of an entering radical to penetrate the latex particle.   

The next step in understanding particle morphology is to maintain the reaction temperature and the seed latex 

characteristics throughout a series of experiments while changing the Tg of the second stage polymer, which is 

the focus of the work here.  The basic conditions of the study include using a polar seed polymer and then 

polymerizing a nonpolar second stage monomer within the seed particles.  This often indicates that the 

equilibrium morphology of this system should be an inverted core-shell.  To reach these conditions, a seed 



copolymer of methyl acrylate and methyl methacrylate with a Tg of approximately 80°C was used.  The second 

stage consisted of a styrene/n-hexyl methacrylate copolymer.  The second stage comonomer ratio was varied 

from 100% styrene to 13% styrene and thus varied the second stage Tg from 104°C to 5°C.   

Analysis of Particle Morphology through Transmission Electron Microscopy 

 The morphologies of the final latices were observed using transmission election microscopy (TEM), 

differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and surfactant titration.  The 

results from the TEM studies are discussed here.  TEM is a electron microscopy technique that bombards the 

sample with an electron beam and generates an image of the sample by detecting where the electrons are 

transmitted.  This, then, allows us to see through the latex particles.  The best way to picture this is to imagine 

looking at an egg under a microscope.  Since a normal microscope will allow you to see only the surface, you 

will have no way to judge how the yoke is arranged inside the egg's shell.  Using this transmission technique, 

we would be able to see the morphology, or arrangement, of the two materials inside the egg: the egg white and 

the yoke.  This analogy can be applied to the composite latex particles we are examining: we are left with a 

cross-section of the particle, so, essentially, we can see inside it. 

Initial morphology simulations for this set of experiments predict that even by making the Tg of the second 

stage polymer very soft, it will still be highly kinetically hindered, forcing it to form on the outside of the 

particles.  When the second stage polymer was glassy or moderately glassy, with Tg's ranging from 104°C to 

60°C, it formed a shell on the outside of the particles.  Figure 4 shows a TEM image of particles with this 

morphology. 

Figure 4. TEM image showing the second stage polymer forming as a shell 

When the Tg of the second stage polymer became significantly less than the 

reaction temperature (Tg = 35°C, Tr = 70°C), lobes began to form on the surface 

of the particles.  This composite latex morphology is shown in Figure 5.  These 

lobes are formed because the soft second stage polymer is more mobile on the 

surface of the particle than the glassy second stage polymer.  This increased 

mobility allows it to form a more thermodynamically favorable morphology.  

Lobes offer this more thermodynamically favorable morphology since they reduce 

the amount of surface area of the second stage, nonpolar polymer that is in contact with the water phase.  This 

also allows more of the polar seed polymer to come in contact with the water, which helps to create a more 

thermodynamically favorable morphology.  

 

Figure 5. TEM image showing the second stage polymer forming as lobes on the 

outside of the particles 

 

  



Conclusions 

The results from these experiments have given us an increased knowledge of how the relationship between the 

reaction temperature and the glass transition temperature of the polymer affect the final composite latex 

morphology.  This knowledge will be useful in industry to help companies better control the morphology of 

their latex particles and therefore the properties which their latex has.  This study is on-going, and similar 

experiments are underway which will help to further our understanding in this area. 

I would like to thank my advisor Dr. Don Sundberg and fellow scientist Jeff Stubbs, my immediate advisor, for 

taking me into their lab, sparking my interest in polymer science, and continually supporting me over the years.  

Without their teachings and inspiration I would not consider myself a scientist.  I owe a great many thanks to 

Jeff for working closely and patiently with me throughout the years while I developed lab experience and 

scientific knowledge from the little I had when I first arrived.  
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