65,154 research outputs found
Real-time diagnostics of gas/water assisted injection moulding using integrated ultrasonic sensors
YesAn ultrasound sensor system has been applied to the mould of both the water and gas assisted
injection moulding processes. The mould has a cavity wall mounted pressure sensor and instrumentation to
monitor the injection moulding machine. Two ultrasound sensors are used to monitor the arrival of the fluid
(gas or water) bubble tip through the detection of reflected ultrasound energy from the fluid polymer
boundary and the fluid bubble tip velocity through the polymer melt is estimated. The polymer contact with
the cavity wall is observed through the reflected ultrasound energy from that boundary. A theoretically
based estimation of the residual wall thickness is made using the ultrasound reflection from the fluid (gas or
water) polymer boundary whilst the samples are still inside the mould and a good correlation with a physical
measurement is observed
High-Resolution Nanoscale Solid-State Nuclear Magnetic Resonance Spectroscopy
We present a new method for high-resolution nanoscale magnetic resonance
imaging (nano-MRI) that combines the high spin sensitivity of nanowire-based
magnetic resonance detection with high spectral resolution nuclear magnetic
resonance (NMR) spectroscopy. By applying NMR pulses designed using optimal
control theory, we demonstrate a factor of reduction of the proton spin
resonance linewidth in a volume of polystyrene and
image proton spins in one dimension with a spatial resolution below
.Comment: Main text: 8 pages, 6 figures; supplementary information: 10 pages,
10 figure
Narrative of Chain cruise #17, phase I : St. George, Bermuda, to Freetown, Sierra Leone, 19 February - 22 March 1961
The journal of a cruise of R/V CHAIN from Bermuda to Freetown, Sierra Leone during February and March, 1961, is the basis of this report. Location of observations are given. The portion of the Mid- Atlantic Ridge lying along the equator was surveyed from 10° to 19°W, and new information concerning the slope and orientation of rift zones was obtained. A detailed bathymetric survey of the Romanche Trench was made. A continuous temperature-depth profile, from the surface to 100 meters, was made along the ship 's track with a thermistor chain. Surface shear was measured with pitotmeters mounted on the chain (surface water velocity relative to the water velocity at the depth of the pitotmeter), to determine the strength and direction of the equatorial undercurrent.The Office of Naval Research under Contract Nonr-, 2196 (00
Transporting long-lived quantum spin coherence in a photonic crystal fiber
Confining particles in hollow-core photonic crystal fibers has opened up new
prospects to scale up the distance and time over which particles can be made to
interact with light. However, maintaining long-lived quantum spin coherence
and/or transporting it over macroscopic distances in a waveguide remain
challenging. Here, we demonstrate coherent guiding of ground-state
superpositions of 85Rb atoms over a centimeter range and hundreds of
milliseconds inside a hollow-core photonic crystal fiber. The decoherence is
mainly due to dephasing from residual differential light shift (DLS) from the
optical trap and the inhomogeneity of ambient magnetic field. Our experiment
establishes an important step towards a versatile platform that can lead to
applications in quantum information networks and matter wave circuit for
quantum sensing.Comment: Accepted by Physical Review Letter
Pure phase-encoded MRI and classification of solids
Here, the authors combine a pure phase-encoded magnetic resonance imaging (MRI) method with a new tissue-classification technique to make geometric models of a human tooth. They demonstrate the feasibility of three-dimensional imaging of solids using a conventional 11.7-T NMR spectrometer. In solid-state imaging, confounding line-broadening effects are typically eliminated using coherent averaging methods. Instead, the authors circumvent them by detecting the proton signal at a fixed phase-encode time following the radio-frequency excitation. By a judicious choice of the phase-encode time in the MRI protocol, the authors differentiate enamel and dentine sufficiently to successfully apply a new classification algorithm. This tissue-classification algorithm identifies the distribution of different material types, such as enamel and dentine, in volumetric data. In this algorithm, the authors treat a voxel as a volume, not as a single point, and assume that each voxel may contain more than one material. They use the distribution of MR image intensities within each voxel-sized volume to estimate the relative proportion of each material using a probabilistic approach. This combined approach, involving MRI and data classification, is directly applicable to bone imaging and hard-tissue contrast-based modeling of biological solids
A robust, scanning quantum system for nanoscale sensing and imaging
Controllable atomic-scale quantum systems hold great potential as sensitive
tools for nanoscale imaging and metrology. Possible applications range from
nanoscale electric and magnetic field sensing to single photon microscopy,
quantum information processing, and bioimaging. At the heart of such schemes is
the ability to scan and accurately position a robust sensor within a few
nanometers of a sample of interest, while preserving the sensor's quantum
coherence and readout fidelity. These combined requirements remain a challenge
for all existing approaches that rely on direct grafting of individual solid
state quantum systems or single molecules onto scanning-probe tips. Here, we
demonstrate the fabrication and room temperature operation of a robust and
isolated atomic-scale quantum sensor for scanning probe microscopy.
Specifically, we employ a high-purity, single-crystalline diamond nanopillar
probe containing a single Nitrogen-Vacancy (NV) color center. We illustrate the
versatility and performance of our scanning NV sensor by conducting
quantitative nanoscale magnetic field imaging and near-field single-photon
fluorescence quenching microscopy. In both cases, we obtain imaging resolution
in the range of 20 nm and sensitivity unprecedented in scanning quantum probe
microscopy
Coherent, mechanical control of a single electronic spin
The ability to control and manipulate spins via electrical, magnetic and
optical means has generated numerous applications in metrology and quantum
information science in recent years. A promising alternative method for spin
manipulation is the use of mechanical motion, where the oscillation of a
mechanical resonator can be magnetically coupled to a spins magnetic dipole,
which could enable scalable quantum information architectures9 and sensitive
nanoscale magnetometry. To date, however, only population control of spins has
been realized via classical motion of a mechanical resonator. Here, we
demonstrate coherent mechanical control of an individual spin under ambient
conditions using the driven motion of a mechanical resonator that is
magnetically coupled to the electronic spin of a single nitrogen-vacancy (NV)
color center in diamond. Coherent control of this hybrid mechanical/spin system
is achieved by synchronizing pulsed spin-addressing protocols (involving
optical and radiofrequency fields) to the motion of the driven oscillator,
which allows coherent mechanical manipulation of both the population and phase
of the spin via motion-induced Zeeman shifts of the NV spins energy. We
demonstrate applications of this coherent mechanical spin-control technique to
sensitive nanoscale scanning magnetometry.Comment: 6 pages, 4 figure
Echo tracker/range finder for radars and sonars
An echo tracker/range finder or altimeter is described. The pulse repetition frequency (PFR) of a predetermined plurality of transmitted pulses is adjusted so that echo pulses received from a reflecting object are positioned between transmitted pulses and divided their interpulse time interval into two time intervals having a predetermined ratio with respect to each other. The invention described provides a means whereby the arrival time of a plurality of echo pulses is defined as the time at which a composite echo pulse formed of a sum of the individual echo pulses has the highest amplitude. The invention is applicable to radar systems, sonar systems, or any other kind of system in which pulses are transmitted and echoes received therefrom
Development of pressure containment and damage tolerance technology for composite fuselage structures in large transport aircraft
NASA sponsored composites research and development programs were set in place to develop the critical engineering technologies in large transport aircraft structures. This NASA-Boeing program focused on the critical issues of damage tolerance and pressure containment generic to the fuselage structure of large pressurized aircraft. Skin-stringer and honeycomb sandwich composite fuselage shell designs were evaluated to resolve these issues. Analyses were developed to model the structural response of the fuselage shell designs, and a development test program evaluated the selected design configurations to appropriate load conditions
- …
