3,330 research outputs found

    Next Generation M2M Cellular Networks: Challenges and Practical Considerations

    Get PDF
    In this article, we present the major challenges of future machine-to-machine (M2M) cellular networks such as spectrum scarcity problem, support for low-power, low-cost, and numerous number of devices. As being an integral part of the future Internet-of-Things (IoT), the true vision of M2M communications cannot be reached with conventional solutions that are typically cost inefficient. Cognitive radio concept has emerged to significantly tackle the spectrum under-utilization or scarcity problem. Heterogeneous network model is another alternative to relax the number of covered users. To this extent, we present a complete fundamental understanding and engineering knowledge of cognitive radios, heterogeneous network model, and power and cost challenges in the context of future M2M cellular networks

    Optimized Performance Evaluation of LTE Hard Handover Algorithm with Average RSRP Constraint

    Full text link
    Hard handover mechanism is adopted to be used in 3GPP Long Term Evolution (3GPP LTE) in order to reduce the complexity of the LTE network architecture. This mechanism comes with degradation in system throughput as well as a higher system delay. This paper proposes a new handover algorithm known as LTE Hard Handover Algorithm with Average Received Signal Reference Power (RSRP) Constraint (LHHAARC) in order to minimize number of handovers and the system delay as well as maximize the system throughput. An optimized system performance of the LHHAARC is evaluated and compared with three well-known handover algorithms via computer simulation. The simulation results show that the LHHAARC outperforms three well-known handover algorithms by having less number of average handovers per UE per second, shorter total system delay whilst maintaining a higher total system throughput.Comment: 16 pages, 9 figures, International Journal of Wireless & Mobile Networks (IJWMN

    A Price Selective Centralized Algorithm for Resource Allocation with Carrier Aggregation in LTE Cellular Networks

    Full text link
    In this paper, we consider a resource allocation with carrier aggregation optimization problem in long term evolution (LTE) cellular networks. In our proposed model, users are running elastic or inelastic traffic. Each user equipment (UE) is assigned an application utility function based on the type of its application. Our objective is to allocate multiple carriers resources optimally among users in their coverage area while giving the user the ability to select one of the carriers to be its primary carrier and the others to be its secondary carriers. The UE's decision is based on the carrier price per unit bandwidth. We present a price selective centralized resource allocation with carrier aggregation algorithm to allocate multiple carriers resources optimally among users while providing a minimum price for the allocated resources. In addition, we analyze the convergence of the algorithm with different carriers rates. Finally, we present simulation results for the performance of the proposed algorithm.Comment: Submitted to IEE

    Easy 4G/LTE IMSI Catchers for Non-Programmers

    Full text link
    IMSI Catchers are tracking devices that break the privacy of the subscribers of mobile access networks, with disruptive effects to both the communication services and the trust and credibility of mobile network operators. Recently, we verified that IMSI Catcher attacks are really practical for the state-of-the-art 4G/LTE mobile systems too. Our IMSI Catcher device acquires subscription identities (IMSIs) within an area or location within a few seconds of operation and then denies access of subscribers to the commercial network. Moreover, we demonstrate that these attack devices can be easily built and operated using readily available tools and equipment, and without any programming. We describe our experiments and procedures that are based on commercially available hardware and unmodified open source software

    An Application-Aware Spectrum Sharing Approach for Commercial Use of 3.5 GHz Spectrum

    Full text link
    In this paper, we introduce an application-aware spectrum sharing approach for sharing the Federal under-utilized 3.5 GHz spectrum with commercial users. In our model, users are running elastic or inelastic traffic and each application running on the user equipment (UE) is assigned a utility function based on its type. Furthermore, each of the small cells users has a minimum required target utility for its application. In order for users located under the coverage area of the small cells' eNodeBs, with the 3.5 GHz band resources, to meet their minimum required quality of experience (QoE), the network operator makes a decision regarding the need for sharing the macro cell's resources to obtain additional resources. Our objective is to provide each user with a rate that satisfies its application's minimum required utility through spectrum sharing approach and improve the overall QoE in the network. We present an application-aware spectrum sharing algorithm that is based on resource allocation with carrier aggregation to allocate macro cell permanent resources and small cells' leased resources to UEs and allocate each user's application an aggregated rate that can at minimum achieves the application's minimum required utility. Finally, we present simulation results for the performance of the proposed algorithm.Comment: Submitted to IEE
    corecore