34,009 research outputs found
Running a Production Grid Site at the London e-Science Centre
This paper describes how the London e-Science Centre cluster MARS, a production 400+ Opteron CPU cluster, was integrated into the production Large Hadron Collider Compute Grid. It describes the practical issues that we encountered when deploying and maintaining this system, and details the techniques that were applied to resolve them. Finally, we provide a set of recommendations based on our experiences for grid software development in general that we believe would make the technology more accessible. © 2006 IEEE
Enabling e-Research in combustion research community
Abstract
This paper proposes an application of the Collaborative e-Science Architecture (CeSA) to enable e-Research in combustion research community. A major problem of the community is that data required for constructing modelling might already exist but scattered and improperly evaluated. That makes the collection of data for constructing models difficult and time-consuming. The decentralised P2P collaborative environment of the CeSA is well suited to solve this distributed problem. It opens up access to scattered data and turns them to valuable resources. Other issues of the community addressed here are the needs for computational resources, storages and interoperability amongst different data formats can also be addressed by the use of Grid environment in the CeSA
Towards a grid-enabled simulation framework for nano-CMOS electronics
The electronics design industry is facing major challenges as transistors continue to decrease in size. The next generation of devices will be so small that the position of individual atoms will affect their behaviour. This will cause the transistors on a chip to have highly variable characteristics, which in turn will impact circuit and system design tools. The EPSRC project "Meeting the Design Challenges of Nano-CMOS Electronics" (Nana-CMOS) has been funded to explore this area. In this paper, we describe the distributed data-management and computing framework under development within Nano-CMOS. A key aspect of this framework is the need for robust and reliable security mechanisms that support distributed electronics design groups who wish to collaborate by sharing designs, simulations, workflows, datasets and computation resources. This paper presents the system design, and an early prototype of the project which has been useful in helping us to understand the benefits of such a grid infrastructure. In particular, we also present two typical use cases: user authentication, and execution of large-scale device simulations
Cross-middleware Interoperability in Distributed Concurrent Engineering
Secure, distributed collaboration between different organizations is a key challenge in Grid computing today. The GDCD project has produced a Grid-based demonstrator Virtual Collaborative Facility (VCF) for the European Space Agency. The purpose of this work is to show the potential of Grid technology to support fully distributed concurrent design, while addressing practical considerations including network security, interoperability, and integration of legacy applications. The VCF allows domain engineers to use the concurrent design methodology in a distributed fashion to perform studies for future space missions. To demonstrate the interoperability and integration capabilities of Grid computing in concurrent design, we developed prototype VCF components based on ESA’s current Excel-based Concurrent Design Facility (a non-distributed environment), using a STEP-compliant database that stores design parameters. The database was exposed as a secure GRIA 5.1 Grid service, whilst a .NET/WSE3.0-based library was developed to enable secure communication between the Excel client and STEP database
GLObal Robotic telescopes Intelligent Array for e-Science
We report here on the ongoing EU FP7 Project GLORIA with emphasis on possibility of investigation
of cataclysmic variables by users. GLORIA stands for GLObal Robotic-telescopes
Intelligent Array. GLORIA enables the first free and open-access network of robotic telescopes
in the world. It represents a Web 2.0 environment where users can do research in astronomy by
observing with robotic telescopes, and/or by analyzing data that other users have acquired with
GLORIA, or from other free access databases like the European Virtual Observatory
Comb-e-Chem: an e-science research project
The background to the Comb-e-Chem e-Science pilot project funded under the UK-Science Programme is presented and the areas being addresses within chemistry and more specifically combinatorial chemistry are discussed. The ways in which the ideas underlying the application of computer technology can improve the production, analysis and dissemination of chemical information and knowledge in a collaborative environment are discussed
Some challenges facing scientific software developers: The case of molecular biology
It is apparent that the challenges facing scientific software developers are quite different from those facing their commercial counterparts. Among these differences are the challenges posed by the complex and uncertain nature of the science. There is also the fact that many scientists have experience of developing their own software, albeit in a very restricted setting, leading them to have unrealistic expectations about software development in a different setting. In this paper, we explore the challenges facing scientific software developers focusing especially on molecular biology. We claim that the nature and practice of
molecular biology is quite different from that of the physical sciences and pose different problems to software developers. We do not claim that this paper is the last word on the topic but hope that it serves as the inspiration for further debate
- …
