
Running a Production Grid Site at the London e-Science Centre

David McBride, Marko Krznarić,
John Darlington

London e-Science Centre
Department of Computing
Imperial College London

{dwm, marko, jd}@doc.ic.ac.uk

Olivier van der Aa, Mona Aggarwal,
Dave Colling

High-Energy Physics Group
Department of Physics

Imperial College London
{vanderaa, m.aggarwal, d.colling}@imperial.ac.uk

Abstract

This paper describes how the London e-Science Centre
cluster MARS, a production 400+ Opteron CPU cluster,
was integrated into the production Large Hadron Collider
Compute Grid. It describes the practical issues that we en-
countered when deploying and maintaining this system, and
details the techniques that were applied to resolve them.

Finally, we provide a set of recommendations based on
our experiences for grid software development in general
that we believe would make the technology more accessible.

1. Introduction

The London e-Science Centre (LeSC) at Imperial Col-
lege London [21] serves two roles: the first, to per-
form research into large-scale distributed computer sys-
tems (“Grid” systems); the second is to provide a produc-
tion high-performance computing service to the Department
of Computing and other researchers at Imperial. These
two activities are complementary; the practical understand-
ing developed from running production computing facili-
ties guides local research activity, whilst developments from
that research can be tested and deployed on production sys-
tems.

The Large Hadron Collider (LHC) [17] is a new par-
ticle accelerator currently being constructed by an interna-
tional consortium at CERN. After it goes into operation in
2007, it will generate on the order of 15PB of data per year
— a quantity of data that simply cannot be processed in any
reasonable time-frame at CERN itself.

The LHC Compute Grid (LCG) [20] project was cre-
ated to solve this problem. Its goal: develop, distribute and
deploy a standard software distribution on cluster systems
at cooperating institutions around the world to build a new

production Grid system sufficiently powerful to meet the
demands of the LHC. Today, the worldwide LCG deploy-
ment currently spans some 136 sites in 36 different coun-
tries, offering to its users access to a total of nearly 14,000
CPUs and approximately 8PB of online storage.

This paper describes how we integrated the LeSC MARS
cluster into the production LHC Grid. It describes the prac-
tical issues that we encountered when deploying and main-
taining this system as well as the techniques that applied to
resolve them.

2. Overview of the LCG Architecture

UI

UI

BDII RBRB

siteA

IS SECE

JDL

siteD

siteC

siteB

User

Figure 1. LCG Architectual Overview

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

Authorized licensed use limited to: Imperial College London. Downloaded on June 25,2010 at 07:45:35 UTC from IEEE Xplore. Restrictions apply.

The LCG software distribution is made up of many indi-
vidual pieces of software drawn from external sources, such
as the Virtual Data Toolkit [26] hosted by the University
of Wisconsin and tools developed as part of the European
DataGrid (EDG) [7] project. The organisation and function
of the LCG software components is shown in Figure 1.

2.1. Computing Element (CE)

The function of a Computing Element (CE) is to pro-
vide a standard network-accessible interface to a site’s local
computer cluster. When the CE receives a properly authen-
ticated job execution request, it will add a suitable job entry
to the local cluster’s batch queue, and report on the job’s
progress through the system during its lifetime.

2.2. Storage Element (SE)

A site Storage Element (SE) provides a standard network
accessible interface to a large file storage system, whereby
any properly-authenticated processes may retrieve or up-
load files from any location. Whilst many SEs simply pro-
vide access to a local online disk array, some sites also pro-
vide access to large high-capacity tape libraries.

2.3. Information System Services

There are a number of Information System (IS) services
operating at an LCG site, typically located on a separate
Monitoring (MON) server. Their function is to collate infor-
mation from the various services running at a site — such
as the number of jobs currently running, pending, etc. and
the amount of storage space available — and report that in-
formation to a set of centrally-accessible Information Index
(BDII) servers.

2.4. Resource Broker (RB)

A job starts with an end-user, who submits a job-
execution request to their local Resource Broker (RB) from
a User Interface (UI) node. This request is expressed as
a Job Description Language (JDL) document, and includes
various important details such as the name of the executable
to be run, the names of the data files that should be staged to
or from the execution host, the job’s memory requirements,
and so forth.

The Resource Broker will validate the user’s credentials
and, if satisfied, will use the status information reported by
the Information System services at each site to dispatch the
job request to the most suitable target.

First, it excludes those site queues which do not satisfy
the job’s hard prerequisites. Out of those site queues re-

maining, it constructs a simple ordering using the Estimated
Response Time (ERT) metric advertised for each queue.1

3. Adaptation of the Compute Element

The LCG software distribution was originally designed
to support a single set of users: namely, the particle physi-
cists who have just taken receipt of a several-hundred node
compute and storage cluster — but who lacks the systems
administrations experience required to deploy a new cluster
infrastructure from scratch.

Thus, the LCG software distributions were designed ac-
cordingly — it provides everything that a LCG cluster
would need, from the cluster management system on up
through the stack, all pre-compiled and ready packaged for
use on any of LCG’s supported Linux distributions.2

However, this software suite is not well adapted for an-
other less-common set of users: namely, those experienced
systems administrators who wish to contribute some frac-
tion of their existing production resources to the Grid ef-
fort. Here, the one-size-fits-all model can fail; even if the
sysadmin extracts the extra services that she lacks from the
official LCG distribution to layer on her existing system, she
will most likely find that the interfaces used by the standard
service implementations are incompatible with their equiv-
ilents already running on her production service.

Indeed, this was exactly the case at LeSC. The MARS
cluster is made up of just over 200 64bit Opteron servers,
each of which running a 64-bit/32-bit dual-arch revision of
RedHat Enterprise Linux 3. On top of this, the GridEngine
batch-job control software and a locally developed manage-
ment infrastructure supported the day-to-day operation for
hundreds of registered users.

Discarding all of our existing infrastructure so that we
could participate in the LCG simply was not an option. In-
stead, it was necessary for us to break apart the LCG soft-
ware distribution to modify (or replace outright) the imple-
mentation of the incompatible components so that it could
be spliced into our existing cluster environment.

3.1. JobManager

The CE runs a Globus Gatekeeper. The Gatekeeper’s
function is to accept general-purpose RSL [23] job specifi-

1Strictly speaking, this ERT is only the RB’s default queue-selection
measure; it is possible to override this with much more sophisticated ex-
pressions in the JDL document for those jobs with unconventional run-time
characteristics.

2Originally, LCG only provided binary packages for RedHat 7.3 — the
only officially supported distribution at the time — and no readily-usable
source-packages. This caused a lot of difficulties as our then-primary clus-
ter, VIKING, was running another Linux distribution which was not binary
compatible. Now that LCG have added support for RedHat Enterprise
Linux 3, as used on MARS, we have bypassed this particular obstacle ...
for now!

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

Authorized licensed use limited to: Imperial College London. Downloaded on June 25,2010 at 07:45:35 UTC from IEEE Xplore. Restrictions apply.

LCG

Hardware

Operating System

YAIM
Configuration &
Management

Batch System

Job Manger Information
System APEL

Globus
Gatekeeper Globus BDII R-GMA

Hardware

Operating System

Local Site
Management

SGE
Batch System

? ? ?

Globus
Gatekeeper Globus BDII R-GMA

Figure 2. Adapting the standard LCG CE dis-
tribution to function on MARS.

cations, translate it into some suitable representation and
submit the job into the local batch system. The batch-
system specific implementations of these functions are pro-
vided by Gatekeeper plugins called JobManagers.

In the LCG software developer’s model, the set of batch
systems that may be installed is small and known — gener-
ally some variant of PBS [22] — and so they have provided
customised JobManager implementations to support these
specific batch systems. However, the LeSC MARS cluster
is running a batch system that is not supported by LCG,
namely Sun’s GridEngine [13]. As a result we have had to
develop and deploy our own JobManager implementation
for GridEngine so that we could re-use the Globus Gate-
keeper provided.

Fortunately, though Globus themselves do not distribute
a GridEngine JobManager, we had developed one as part of
our involvement in the Level 2 Grid deployment run by the
UK Grid Engineering TaskForce (ETF) [19]. With only mi-
nor refinements we have found that it can provide the func-
tional glue between the Gatekeeper and our batch system.

3.2. Information Systems

The purpose of the Information System processes on the
cluster front-end machines is to periodically collect statis-
tics from various local systems — such as the number of
jobs currently waiting in each batch system queue, or the
amount of disk space currently available — and publish
them into a global hierarchy of information servers. This
information includes an Estimated Response Time value for
each of the site queues.

The information published by this system is vitally im-
portant; it is used by the Resource Brokers deployed at other
sites to perform service discovery and to make scheduling
decisions. Without a working information system, a cluster
instance — even if otherwise fully functional — will effec-

tively not exist.
The Information System processes on an LCG site all

centre around the local BDII service - a simple LDAP
server, backed by a Berkeley database, which stores the cur-
rent state of the cluster as reported via various sensor pro-
cesses running on the various site frontend machines.

Like the JobManager, the Information System operates
through a plug-in system — in this case, the Generic Infor-
mation Provider (GIP) [8] framework. The system operates
by simply running a series of system-specific GIP plug-in
scripts, called Information Reporters. Each Reporter script
queries the local system it is responsible for and returns sta-
tus data according to a standard format.

Because we were using an unsupported batch system,
however, we needed to provide a GridEngine-specific GIP
plugin that was capable of reporting cluster-state informa-
tion in the expected form. Unfortunately, unlike the case of
the Jobmanager there was no suitable pre-existing Informa-
tion Reporter implementation that we could quickly press
into service.

So, we naturally began work to develop our own imple-
mentation. However, these was an additional complication:
the GLUE schema [12] that specifies the data structures to
be used in Information System interactions assumes that a
cluster manager’s state can be expressed using a Queue-
based model. In this model, a cluster’s execution hosts are
organised into a set of individual queues; a job, when sub-
mitted, specifies which particular queue it would like to be
appended to. See Figure 3.

However, our local GridEngine installation had no such
specific queues. (Indeed, prior to version 6, GridEngine
didn’t even support the concept of cluster-wide queues.) In-
stead, all cluster-local job scheduling operations are based
on attributes attached to each individual job, such as their
maximum wall-clock runtime, maximum memory usage,
etc. To make matters worse, grid jobs submitted via a Re-
source Broker cannot be annotated with such information
— the JDL language that end-users must use to express their
job specifications is very limited and doesn’t allow for the
expression of such constraints. See Figure 4.

3.3. Virtual Queues

To work around this problem, we developed the concept
of virtual queues. A virtual queue differs from a real queue
in that it does not actually exist in the underlying batch sys-
tem; indeed, a system which advertises virtual queues need
not have any explicitly defined queues at all. The virtual
queues themselves are defined in terms of job attributes; for
example, the MARS cluster currently has a “10min” queue
defined which includes all jobs with a maximum wall-clock
runtime of 10 minutes or less. The queue also includes all
of the cluster’s execution hosts which are able to execute

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

Authorized licensed use limited to: Imperial College London. Downloaded on June 25,2010 at 07:45:35 UTC from IEEE Xplore. Restrictions apply.

Re
so

ur
ce

 B
ro

ke
r

Jo
b

M
an

ag
er

In
fo

rm
at

io
n

Re
po

rte
r

JDL

Ba
tc

h
Sy

st
em

Virtual Queue
Configuration

10min: max-wall_time=360

script

max-wall_time=360

Cluster
Status

RSL

Queue: 10min

Virtual Queue
Status

Queue-based Model Attribute-based Model

Figure 5. An attribute-based batch system running LCG jobs advertised using virtual queues.

such jobs.
Because grid jobs specify their job characteristics sim-

ply by indicating which specific queue they would like to
be submitted to — as opposed to specifying the properties
explicitly in the job’s RSL specification — it is also neces-
sary to extend the JobManager responsible for submitting
the job. Happily, these modifications are relatively minor;
all it needs to do is parse the set of virtual queues currently
defined for the cluster and map the requested virtual queue
name to the set of attributes that define that queue.

For example, when a Grid job arrives requesting the non-
existent ’10min’ queue, it is simply submitted to the general
job queue with a specified maximum wall-clock time of 10
minutes.

The disadvantage of advertising a cluster’s state using
virtually-defined queues is that the implementation of the
Information Reporter must necessarily be more complex.
For example, the ERT metric calculations are much more
involved. Normally, the ERT for a queue is calculated as
follows:

ERT =
Σi≥0ti

2N
,

where ti is the maximum amount of execution time remain-
ing for a job i and N denotes the total number of execution

slots available.
At a conventional site, the Reporter can simply iterate

through the state of each of the cluster system’s real physi-
cal queues; with virtual queues, however, it is necessary for
the script to calculate the job and host membership of each
virtual queue manually before it can complete the calcula-
tion — a non-trivial exercise.

This can also give rise to some confusing-looking statis-
tics; any given job, depending on its properties, can exist in
zero, one or even all of the virtual queues simultaneously —
which can violate assumptions made by some of the stan-
dard LCG monitoring tools. The GStat [15] tool, for ex-
ample, used to calculate the total number of jobs currently
running on our cluster by summing all of the running-job
totals listed for each of our cluster’s queues — leading to
some wildly inflated numbers!

However, the advantages of advertising virtual queues
greatly outweigh these inconveniences. Administratively
creating or destroying even large numbers of virtual queues
will have no impact on the cluster interface seen by our local
grid users; similarly, our local cluster administrator is free to
modify his local batch system configuration as necessary to
meet the needs of our existing local production users with-
out impacting incoming Grid jobs. The two concerns are

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

Authorized licensed use limited to: Imperial College London. Downloaded on June 25,2010 at 07:45:35 UTC from IEEE Xplore. Restrictions apply.

Batch System

Job Description
(e.g. Queue: 10 min)

10 min 24 hrs 48 hrs

Figure 3. The Queue Model as used in the
GLUE Schema

entirely seperated, allowing a great deal of operational flex-
ibility.

3.4. Accounting

There exists an accounting system in the standard LCG
software distribution called APEL [1]. The function of the
software is simple; it periodically reads through the batch
system’s accounting logs and matches them against the var-
ious global Grid user and group idenitfiers using the Globus
gatekeeper’s logging output. It then uploads this informa-
tion to a central data store.

Unfortunately, the original implementation of the APEL
software was very much specific to the PBS batch system as
used by the standard LCG software distribution; no support
existed for any other batch systems such as the GridEngine
installation on MARS. (Indeed, APEL itself stands for “Ac-
counting using PBS Event Logs”!)

As the LCG software distribution matured, APEL —
though it kept its name — was re-engineered to support
batch systems other than PBS. Earlier this year the APEL
developers, in concert with CESGA, have completed a
GridEngine-specific variant of APEL which, with minor

Batch System

Job Description
(e.g. max-wall_time=360s)

Figure 4. The Attribute Model, as embodied
by the LeSC GridEngine installation.

modifications, is now deployed and operational at LeSC as
well.3

4. Adaptation of the Storage Element

As part of our contribution towards the global LCG ef-
fort, we would like to provide access to some of our storage
capacity in addition to our computing facilities. The storage
services in LCG are based on the Storage Resource Man-
ager interfaces.4 The two SRM implementations in use at
most LCG sites today are dCache [4] and Disk Pool Man-
ager (DPM) [5]. Both of these SRM implementations are
typically deployed on Linux storage servers; however, at
LeSC, our primary storage arrays are all attached to Solaris
mainframes. dCache is closed-source, and binaries for So-
laris are not readily available which makes it unusable for a
Solaris server deployment. The source for DPM, however,
is publically available under a free license.

So we have been working on rebuilding DPM from
source on our Solaris servers so that they can act as Grid-
accessible storage systems.

3There exists, unfortunately, more than one GridEngine-specific Job-
Manager implementation by different LCG sites — and more unfortu-
nately, the CESGA test LCG installation used to develop the GridEngine
APEL implementation used another variant that generates different log
output to our own. As a result, the current official Java-based APEL im-
plementation doesn’t operate correctly out-of-the-box.

4There are actually two major versions of the SRM interface specifica-
tion; at present, SRMv1 is the interface in current active use — though a
migration to using the newer SRMv2 specification is planned.

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

Authorized licensed use limited to: Imperial College London. Downloaded on June 25,2010 at 07:45:35 UTC from IEEE Xplore. Restrictions apply.

This work is still ongoing; there have been various dif-
ficulties in building not just the DPM software itself, but
its many dependencies — some of which are not as mature
as would be desired. Until we can bring our own native
SE online, we are using the SRM services provided by the
neighbouring High-Energy Physics group.

A full log of the work as it progress (along with the 20+
patches generated so far!) can be found online at [6].

5. Monitoring and Maintenance

The monitoring of any infrastructure is vital to its con-
tinued productive operation; The LCG and the sites from
which it is composed are no different. The LCG developers
have thus developed a set of monitoring tools that continu-
souly test the availability and correct functionality of site
services. Some of these tools generate automatic alarms,
which are registered in the form a problem ticket in the
Globus Grid User Support (GGUS) request-tracking system
[10].

5.1. GStat

GStat (short for Grid Statistics) is a tool for monitoring
the data published by a site’s information system. It op-
erates by periodically querying each site’s BDII (Berkely
Database Information Index) service and records the state
of the site over time. It verifies that the information being
reported by each individual site is self-consistent, properly
formatted, and satisfies some basic sanity checks. For ex-
ample, it will check that the number of jobs currently re-
ported as queued in the site’s batch system is not signifi-
cantly larger than the total number of batch servers currently
operational.

It also monitors site status over time; if the system ob-
serves a large variation in the number of services advertised
by the site, it will flag up a warning — under such cir-
cumstances it is likely that either the information-gathering
mechanisms themselves are intermittently failing or that
services at the site are repeatedly crashing and restarting.
All the site information gathered by GStat is accessible from
a central web server [15], and has been invaluable as a di-
agnostic tool for identifying site configuration problems.

5.2. Site Functional Tests

Site Functional Tests (SFT) are used to test the function-
ality of the core LCG services running at each site. It does
this by regularly sending test jobs to the site Gatekeeper.
Each test job runs a standard battery of tests to exercise all
of the facilities that a real end-user job may need to access.
The tests include:

• Job Submission Status: Could the test job actually be
successfully submitted via a Resource Broker, or did
some error occur?

• File Replication Tests: A small test data file is created
on the worker node and copied to the local SE; the file
is then registered with the LCG File Catalog (LFC).
The job then requests that the file be replicated to an-
other remote SE, typically at CERN.

• CA Tests: The test verifies that the latest versions of
each of the LCG Certification Authority’s certificates
is installed. Also, the certificate revocation lists are
checked for freshness.

• VO tags: Each LCG Virtual Organisation may pub-
lish “tags” — simple strings — in the site’s informa-
tion system output. These are commonly used by a
VO to indicate which version’s of the VO’s specialist
software has been installed. This test simply checks
that the interface for setting and checking VO tags is
operating correctly.

• VO Software Volume: Each VO can install their soft-
ware in a special dedicated volume on each cluster; this
test simply checks this volume is accessible.

Each test can return different status results, ranging from
“OK” to “CRITICAL”, indicating a critical site failure.
Critical site failures result in a ticket being automatically
raised against a site; if the ticket is not resolved (or at least
acknowledged) quickly, the site is at risk from being re-
moved from the production grid until the fault has been cor-
rected. Statistics regarding the number of SFT failures at
each site are kept for further analysis on the Communica-
tion Interface for Central Operation (CIC) portal [3].

5.3. Grid Load

Monitoring the number of jobs in any given state in the
whole grid is important for understanding how the system
as whole is operating. The function of the GridLoad tool
is to monitors all of the LCG Resource Broker and keeps
track of all of the jobs’ status over time in a local relational
database. This database is then polled every five minutes
and used to populate Round-Robin Database (RRD) files,
from which plots of job states over time can be readily gen-
erated with RRDTool [25]. The user interface on the Grid-
Load webserver [16] allows for a variety of different views
of the data, such as by VO or by CE. This facility has been
useful for monitoring the job-abort rate at sites, and also for
spotting CE gatekeeper problems quickly. Further details of
this system are available in [2].

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

Authorized licensed use limited to: Imperial College London. Downloaded on June 25,2010 at 07:45:35 UTC from IEEE Xplore. Restrictions apply.

5.4. Security

The LHC Grid’s constituent resources present an enor-
mously attractive target for attackers. The machines partic-
ipating in the Grid tend to be homogenous; they all trust
a global authentication infrastructure; they have access to
very large quantities of storage capacity and network band-
width - in addition to the massive processing power avail-
able. Moreover, the individual cluster machines are fre-
quently run and maintained by inexperienced administra-
tors, who may not be able to distinguish a normal oper-
ational load from a compromised system — especially if
more sophisticated attacks are employed.

Monitoring of a cluster’s current state is important; it al-
lows you to see what the cluster’s “normal” state actually
looks like so that anomolies, when they occur, can be iden-
tified as such. Unfortunately, although the above tools exist
for monitoring the load of a cluster or of the Grid as a whole,
visualisation tools that show what individual jobs are actu-
ally doing on a cluster are not widely available. This is a
topic of further investigation.

6. Recommendations for future development

The original aim of LCG was to provide a grid infras-
tructure to support a single application — the Large Hadron
Collider. However, as the system has matured and ex-
panded to encompass many high-perfomance computing
sites around the world, it is now moving beyond the single-
application focus and being deployed as a general-purpose
grid computing platform — gLite [9].

As it continues to grow, we expect that interest from
academic and commercial organisations will result in them
wishing to join the growing system. However, they will be
enjoined from contributing their resources if doing so would
require that they are forced to scrap their existing infrastruc-
ture.

However, gLite’s implementation must also continue to
mature if it is to be adopted as the global standard for grid
computing activities. Hence, we propose the following rec-
ommendations, tackling a number of issues addressed in
this paper:

• Source code for LCG releases made more readily ac-
cessible, e.g. as source RPM packages.

• Better seperation-of-concerns between LCG compo-
nents.

• Implementation of support for other batch systems as
standard. (In fairness, LCG developers are now work-
ing on adding GridEngine support into the standard
distribution.)

• Improvement of LCG auto-configuration scripts to be
more fault-tolerant and system-agnostic.

• We would recommend that a stronger emphasis is
placed on developing stronger security protections into
LCG.

• Support for the specification of job attributes in JDL.

7. Conclusions

We have demonstrated that the principle of adapt-the-
application, whilst often requiring more effort than a more
typical dedicated-cluster installation, is workable and main-
tainable in practice — and almost certainly far less disrup-
tive to our existing users than replacing most of LeSC core
systems would have been. Indeed, apart from an increase
in the number of jobs arriving on MARS, they have seen no
changes at all.

In addition, these adapations have been made public for
others to re-use, deploy and develop to satisfy their own
operational needs. Indeed, there has been a lot of interest
in our work from other existing LCG sites and other pro-
duction cluster operators who, before now, were either pre-
vented from deploying LCG at all or are keen on replacing
the standard PBS cluster manager with a more flexible al-
ternative.

For those interested in using LCG or gLite with Sun’s
GridEngine, further information and source code is avail-
able at [18].

8. Acknowledgements

This work was funded by the UK Particle Physics
and Astronomy Research Council (PPARC) as part of the
GridPP project [14].

References

[1] Accounting using PBS event logs (APEL).
http://goc.grid-support.ac.uk/gridsite/accounting/.

[2] M. Aggarwal, D. Colling, B. MacEvoy, G. Moont, and
O. van der Aa. A statistical analysis of job performance
within the LCG grid. In Computing in High Energy and
Nuclear Physics, 2006.
http://www.gridpp.ac.uk/tier2/london/Data/lcgstat-
chep06.pdf.

[3] Communications interface for central operation (CIC).
http://cic.in2p3.fr/.

[4] dCache. http://www.dcache.org/.
[5] Disk Pool Manager (DPM).

https://uimon.cern.ch/twiki/bin/view/LCG/DpmAdminGuide.
[6] Building Disk Pool Manager on Solaris.

http://www.gridpp.ac.uk/wiki/DPM-on-Solaris.

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

Authorized licensed use limited to: Imperial College London. Downloaded on June 25,2010 at 07:45:35 UTC from IEEE Xplore. Restrictions apply.

[7] European DataGrid Project (EDG).
http://eu-datagrid.web.cern.ch/.

[8] Generic Information Provider (GIP).
http://lfield.home.cern.ch/lfield/gip/documentation.html.

[9] gLite. http://glite.web.cern.ch/glite/.
[10] Global Grid User Support (GGUS). http://www.ggus.org/.
[11] Globus Toolkit v2 (GT2).

http://globus.org/toolkit/docs/2.4/overview.html.
[12] GLUE Schema. http://glueschema.forge.cnaf.infn.it/.
[13] GridEngine. http://gridengine.sunsource.net/.
[14] GridPP. http://www.gridpp.ac.uk/.
[15] GSTAT. http://goc.grid.sinica.edu.tw/gstat/.
[16] IC-HEP GridLoad Monitor.

https://gfe03.hep.ph.ic.ac.uk:4175/cgi-bin/load.
[17] Large Hadron Collider (LHC). http://lhc.web.cern.ch/.
[18] LCG on SGE. http://www.gridpp.ac.uk/wiki/LCG-on-SGE.
[19] Level-2 Grid.

http://tyne.dl.ac.uk/ETF/public/Deployment/Level2/.
[20] LHC Compute Grid (LCG). http://lcg.web.cern.ch/LCG/.
[21] London e-Science Centre, Imperial College London, UK.

http://www.lesc.ic.ac.uk/.
[22] OpenPBS. http://www.openpbs.org/.
[23] Resource Specification Language (RSL).

http://www.globus.org/toolkit/docs/2.4/gram/rsl spec1.html.
[24] R-GMA. http://www.r-gma.org/.
[25] RRDTool. http://oss.oetiker.ch/rrdtool/.
[26] Virtual Data Toolkit (VDT). http://vdt.cs.wisc.edu/.

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00 © 2006

Authorized licensed use limited to: Imperial College London. Downloaded on June 25,2010 at 07:45:35 UTC from IEEE Xplore. Restrictions apply.

