
Open Research Online
The Open University’s repository of research publications
and other research outputs

Some challenges facing scientific software developers:
The case of molecular biology
Conference or Workshop Item

How to cite:

Morris, Chris and Segal, Judith (2009). Some challenges facing scientific software developers: The case of
molecular biology. In: IEEE e-Science 2009, 9-11 Dec 2009, Oxford, UK.

For guidance on citations see FAQs.

c© 2009 IEEE

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://www.oerc.ox.ac.uk/ieee/programme

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

https://core.ac.uk/display/2912?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://www.oerc.ox.ac.uk/ieee/programme
http://oro.open.ac.uk/policies.html

Some Challenges Facing Scientific Software Developers: the Case of
Molecular Biology

Chris Morris
Computational Science and Engineering

Department
Science and Technology Facilities Council

Daresbury Laboratory
Near Warrington

WA4 4AD
UK

Correspondence to: chris.morris@stfc.ac.uk

Judith Segal
Department of Computing

The Open University
Walton Hall

Milton Keynes
MK7 6AA

UK
j.a.segal@open.ac.uk

Abstract

It is apparent that the challenges facing scientific
software developers are quite different from those
facing their commercial counterparts. Among these
differences are the challenges posed by the complex
and uncertain nature of the science. There is also the
fact that many scientists have experience of developing
their own software, albeit in a very restricted setting,
leading them to have unrealistic expectations about
software development in a different setting. In this
paper, we explore the challenges facing scientific
software developers focusing especially on molecular
biology. We claim that the nature and practice of
molecular biology is quite different from that of the
physical sciences and pose different problems to
software developers. We do not claim that this paper
is the last word on the topic but hope that it serves as
the inspiration for further debate.

1. Introduction

Advances in science are becoming ever more reliant
on software, used for instance to simulate complex
processes which are impossible to investigate in a lab
(the effect of a nuclear explosion, for example) or to
aggregate vast amounts of data from many different
sources in order to search for patterns and generate
hypotheses. However, there is a widespread feeling
among scientific software developers that the
challenges of developing such software remain largely
invisible to the scientists who use or commission such
software (Segal, 2007, Segal, forthcoming). In our
conversations with such developers, we have heard

many express regret that the software they deliver,
despite their best efforts, does not optimally support
their scientist users. They ascribe this in part to the
fact that scientists, especially those who commission or
fund the development, don’t understand the challenges.

 Two examples are frequently cited. The first is that,
according to many scientific software developers,
scientists don’t realise that funding is necessary to
maintain software after initial delivery for the
following reasons: infrastructure software such as web
browsers and operating systems change over time
necessitating changes in application software; and the
delivery of the software often opens up new avenues of
scientific enquiry and hence new requirements emerge.
The second example is that many scientific software
developers feel that scientists don’t realise that
software developed at great expense in one project
might be reused at little cost in others provided funding
is made available to ensure that the initial software
meets the criteria of robustness and generalisability.

The aim of this paper is to explore and articulate the
challenges inherent in scientific software development
and in so doing, to raise their visibility among
scientific software developers, scientists in general and
molecular biologists in particular.

To this end, in section 2 below, we discuss some
challenges which we think are generic to all scientific
software developers and in section 3, consider
molecular biology. The practice of molecular biology
has characteristics which set it apart from the physical
sciences. For example, molecular biology has typically
been studied by different sub-disciplines applying
different tools, standards of evidence etcetera to the
same biological entity. In addition, molecular biology

is heavily context based and thus does not lend itself
easily to generalizations or abstractions (Knorr Cetina,
1999). Such characteristics have a significant impact
on developing molecular biology software as we shall
discuss in section 3. We should emphasise here that
section 3 is, we think, highly novel: we have not seen
the challenges articulated herein discussed elsewhere.
Thus this section should not be regarded as the last
word on the topic but rather as an invitation for
molecular biologists and developers of molecular
biology software to explore the topic further.

In section 4, we discuss where we go from here.
We have begun to articulate the challenges: how do we
go about addressing them? We discuss a current
initiative, but again, intend this section to act as a
jumping-off point for debate and an invitation to others
to get involved.

2. Generic challenges

In this section we describe the challenges that are
common to most, if not all, scientific contexts.

2.1. Some challenges associated with the
traditional model of scientific software
development

Traditionally, scientific software has been
developed by a scientist (or scientists) in order to
address the specific current problems of either the
developer him/herself or that homogeneous group of
scientists in which the developer is embedded. In her
field studies of a variety of scientists developing
software in this context, Segal (Segal 2005, 2007,
2009) identified a widespread model of software
development, which, while it is very successful within
the traditional context in which it is usually deployed,
does not generally result in software which may be
used safely outside of such a context. That is, the
developers of such software are not generally
concerned with how it might be deployed to address
problems other than those for which it was originally
intended and so:

• they pay little attention to the comprehensibility

of the code, thus making it difficult to extend and
maintain.

• they test the code only with respect to the specific
problem they are addressing, and hence the
reliability of the code in different contexts is not
assured.

• they are not aware of the challenges associated
with the issue of negotiating requirements in a
diverse community.

Providing the software is only used in the context
for which it is developed, the developer(s) lack of
attention to these concerns poses no problems.
Problems emerge, however, when the software is
deployed outside this context, for example, when the
software ‘escapes’, as it were. In this (not uncommon)
situation, a piece of software developed according to
the traditional model is observed to be successful at
addressing a particular problem and is appropriated and
possibly modified in an ad hoc manner by other
scientists in the same group to address other problems,
and then by scientists outside that group, and so on,
while all the time such robustness and efficacy that it
had in its unmodified state is only assured within the
original context of use. Related to this is the problem
of legacy software. Legacy software is a means by
which an older generation of scientists might pass
down (at least some of) their encapsulated knowledge
to a younger. However, such software is generally
written according to the traditional model, so its use
outside the context for which it was developed is, as
described above, inherently risky.

The challenge here is raise the awareness of the
scientist-developer both of the risks involved in
traditional development and of the tools, methods and
technologies which might mitigate such risks. This
challenge is made more difficult by identifying which
of the myriad available tools, methods and
technologies are helpful in the specific scientific
context in which a particular scientist-developer works.
It is hoped that the proposed network, ISS-net, see
section 4 below, will address this challenge by
exploring the fit between methods, tools and
technologies on the one hand and scientific contexts of
use on the other.

2.2. Some challenges associated with multi-
disciplinary development teams

By ‘multi-disciplinary teams’ in this context, we
mean teams consisting of scientists and scientist-
developers, and also of professional software
developers to whom the science is just another
application domain. Such multi-disciplinary teams are
essential when the software is intended to support a
community of scientists with a wide range of problems,
or where the complexity of the software needed is
beyond the development capabilities of a scientist.

As with any multi-disciplinary team, there are
challenges of communication across the disciplines,
but there are additional challenges specific to the fact

that some members of the team are scientists. It is very
likely that such scientists have experience of the
traditional model of scientific software development,
as discussed in 2.1. above. Field studies (Segal 2008a,
2008b, 2009) have indicated that scientist-developers
frequently do not recognize that the success of this
model is dependent on a specific context in which the
developer is a potential user and where the scientific
problem to be addressed is of the moment, and try to
apply the model, consciously or unconsciously, in
other contexts.

Often, and in our view, rightly, a scientist is in
overall charge of a scientific software development
project. Segal records several instances of scientists in
such a role not being aware of the issues of negotiating
requirements from a heterogeneous user community or
of testing or of developing the software so as to be
maintainable. As discussed in 2.1. above, these are not
salient issues in the traditional software development
context. This lack of awareness results in clashes of
expectations between scientists and professional
software engineers as to the amount of resources
necessary and the nature of the skills required to enable
a successful scientific software development.

Typically, the scientist, used as he/she is to the
traditional context of scientific development, expects
any such development to require less time and fewer
specialised skills than does the professional software
developer. One author has the experience of making
time estimates for development tasks that are typically
three times greater than the estimates made by a senior
scientist with extensive experience of the traditional
development model.

Additional challenges occur when the developers
include computer scientists, as is frequently the case
for research-council funded e-science projects. Here
there is a potential clash between the aims of the
computer scientists – to explore novel uses of
computers – and the end-user scientists for whom the
software is merely a black box and is judged solely in
relation as to how well it supports the science.

2.3. Some challenges of project management in
multi-disciplinary scientific software
developments

In 2.2. above, we noted that multi-disciplinary
teams of scientists, scientist-developers and
professional software developers, are frequently under
the management of a scientist. We also discussed the
potential clash of expectations between the scientists
and professional software developers regarding the
resources to be deployed. Other challenges may arise
from the incongruence of certain concepts, such as

‘project success’, ‘project management’ and
‘authority’.
• A scientist will deem a scientific software

development project a success if it demonstrably
advances the science irrespective of whether it
delivers the software exactly as in the project
proposal. To a professional software developer,
however, a scientific software development
project is a success precisely if it does deliver the
software exactly – or almost exactly - as in the
project proposal.

• To a scientist, project management for such a
project is focused on advancing the science; to the
professional software developer, it is focused on
advancing the software development.

• The scientist uses his authority to advance the
science; the professional software developer
expects authority to be deployed in the interests
of advancing the software development.

Such incongruences in the understanding of roles
and concepts can lead to complete breakdowns in
working relations (Segal, forthcoming)

2.4. The challenges of retaining scientific
software developers

Successful scientific software developers are a rare
breed. Whether they come from a scientific or a
professional software development background, in
order to be successful they have had to learn hard
lessons about communication and collaboration across
the disciplinary boundaries of science and software
engineering. Given the increasing reliance of scientific
advances on scientific software, one might expect that
such rare and valuable beasts would be fostered and
nurtured so as to encourage them to stay in post. Such
does not appear to be the case.

The scientific community values scientific advances
(of course) and the publications which report such
advances, whereas the effort, knowledge and skill
which goes into the production of the software
enabling such advances remains, to a large extent,
invisible. Segal (2007) noted in her field studies the
pervasiveness among some scientific communities of
the assumption that ‘anyone can develop software’. A
couple of dangers associated with this assumption are,
firstly, that scientists may be appointed to software
development teams solely on the basis that they are
good scientists in need of funding without any
reference to their software experience and skills, and
secondly, that funding agencies may provide only
enough funding to employ professional software

developers at the beginning of their careers (Segal,
forthcoming).

As to software developers who have a background
in the specific science, if they wish to pursue a career
in scientific research, they would currently be ill-
advised to focus on software development. One might
get a single publication from a software development
describing the functionality of the software, but in this
publication-led era, a single publication in the quite
lengthy time period needed to develop the software is
not likely to enhance one’s scientific career.

This problem of the lack of visibility of software
development among scientists was recognized by Star
and Ruhleder almost 15 years ago (Star and Ruhleder,
1996) in their comprehensive study of the (lack of)
adoption of an infrastructure package to support the
community of scientists studying the model organism
c. elegans. The following comment probably still
holds true today:

“The difficulty is that there are no clear
rewards for this kind of work [scientific
software development], except for the
contributions the tool makes to one’s own
work. The biologist working with the
computer scientist doesn’t get any “credit”
for this within his own discipline…” [Star
and Ruhleder]

3. Challenges specific to molecular biology

Almost since the very inception of computers,

molecular biologists and the crystallographers with
whom they work closely have availed themselves of
this powerful tool. For example, Dorothy Crowfoot
(later Dorothy Crowfoot Hodgkins), used a computer
in her work on the structure of B12 in the late 1940s
(Wolpert and Richards 1988).

The current software tools used successfully by
molecular biologists have been developed both by
scientist-developers, where challenges include those
described in 2.1. above, and by multi-disciplinary
teams of scientists and software developers, as in 2.2.
An example of the former is the CCP4 suite of
programs for protein crystallography which
encapsulate much current crystallography knowledge,
see http://www.ccp4.ac.uk and (CCP4, 1994) An
example of the latter is the social web site
myExperiment, http://www.myExperiment.org,which
provides a virtual area where scientists with the same
interests can safely share workflows and other objects.

In what follows, we firstly discuss the challenge of
choosing between the traditional and the multi-
disciplinary models of software development. We then

explore some characteristics of the discipline of
molecular biology and its associated practices, and the
impact of these on software development.

3.1. Choosing between a traditional and a
multi-disciplinary model of software
development.

One challenge facing molecular biologists when
initiating a project in which software development
forms a part, is to determine whether to opt for a multi-
disciplinary development or for the more traditional
model of 2.1. At first sight, it might appear that this
choice is simple, depending only on whether the
software is to support “big” science, e.g. work
involving large amounts of data such as high
throughput work in protein science, or “small” science,
such as hypothesis-driven investigations. In the former
case, the obvious choice is to deploy multi-disciplinary
software development teams; in the latter, it’s to use
the more traditional, cottage industry, model.

 We argue here that what appears to be simple and
obvious is, in fact, far from being so. Instead, we
argue that although the debate about the relative
contributions of big and small approaches to science is
sometimes intense (Steitz, 2007), these approaches are
essentially complementary, and so are the multi-
disciplinary and traditional models of development
needed to support them.

Let us firstly consider the complementary natures of
big and small science. Big science, especially in the
field of molecular biology, is typically associated with
accruing and analysing large data sets. Small science
is typically associated with hypothesis investigation in
some sense. From the big science, for example from
visualisations of large data sets, can arise the
hypotheses for more detailed investigation in the small.
In addition, data mining methods on large data sets can
serve to identify methods which are more likely to be
successful than not when applied to (for example) the
expression of proteins.

As to small science, there will always be the
scientist who is motivated to pursue individual or small
group research by the challenge of standing apart from
the common herd (as it were). For example, James
Sumner, who isolated urease, said in his Nobel Lecture

“A number of people advised me that my
attempt to isolate an enzyme was foolish, but
this advice made me feel all the more certain
that if successful the quest would be
worthwhile” (James Sumner, quoted in
Tanford and Reynolds, 2004)

From small science, there often come results which
have profound effects on the advance of big science.
For example, the Human Genome Project, the epitome
of a big science project, would not have been possible
without the small science of Watson and Crick.

We claim that, as with big and small molecular
biology, the multi-disciplinary and traditional models
of software development are likewise complementary.
In big science, the collection and storage of big data
sets requires the reliability provided by the tried and
trusted tools and methods of software engineering and
hence necessitates the deployment of a multi-
disciplinary team involving both scientists and
professional software developers. However, the
deployment of such data, its analysis with respect to a
certain research question, might well be done better
using software developed according to the traditional
cottage industry approach. On the other hand, the
molecular biologist working in the small using
software she/he has developed using the traditional
model, is very likely to make use of GenBank, the NIH
genetic sequencing database,
http://www.ncbi.nlm.nih.gov/Genbank/index.html,
which is, no doubt, maintained in part by professional
software developers using software engineering
methods.

Thus, what looked like a simple equation (big
science projects = multi-disciplinary software
development teams; small projects = traditional cottage
industry development) is, we feel, more subtle than
first appears, and challenges the principal investigators
of molecular biology projects to identify the right mix
of developers.

3.2. Molecular biology as a set of sub-
disciplines

Traditionally, molecular biology has been practised

as a set of sub-disciplines, each with a different
perspective on the same biological object and each
centered on different techniques. For example, Tanford
and Reynolds (2004) describe protein scientists in the
1930s as being a very diverse group of people, with
assorted scientific backgrounds and totally different
ways of working, but note the acceptance of this
diversity:

“A common bond was a tacitly agreed
permissiveness - carte blanche for whatever
your vision to future progress might be."

Until very recently, molecular biologists were, as in

the quote above, content on the whole to focus on one
sub-discipline, using the associated tools and software

of that sub-discipline, for example, of protein
crystallography, nuclear magnetic resonance or
electron microscopy. There has traditionally been little
collaboration between practitioners of the different
sub-disciplines and hence little need for data sharing or
for software which spans sub-disciplines.

There are problems with this separation as the
following anecdote illustrates. It was told to one of the
authors at a conference of structural biologists working
for pharmaceutical companies. The two participants in
the story were a crystallographer and a medicinal
chemist, and they were discussing the binding of a
small molecule to a protein. The crystallographer said
that the electron density shows that the small molecule
is folded twice, in a chair shape. The medicinal chemist
said that the energetics require that the small molecule
is planar. Since neither understood the evidence on
which the other made his judgment, no agreement
could be reached.

There is some evidence that this state of affairs is
changing, see, for example, the discussion about
extending structural approaches to cellular scale in
Harrison (2004) and the emerging focus on systems
biology. There is thus the challenge to develop
software which joins up the software associated with
separate sub-disciplines in order to support a more
joined-up view of biology. Such software should at
least enable seamless data transfer and thus support, for
example, the input of results from structural into
systems biology.

A recent initiative to address this challenge is
INSTRUCT, see http://www.instruct-fp7.eu, a pan-
European project aiming to provide infrastructure for
integrating sub-disciplines in structural biology. At the
time of writing, INSTRUCT is at an early stage and it
remains to be seen how far it succeeds in its aim.

3.3. The heavy dependence of molecular
biology on context

One characteristic of biology as compared with

physical sciences is its heavy dependence on context.
As a simple example, the same protein has completely
different behaviour under different circumstances, e.g.
in different organs of the human body. One
implication of this is that biology, unlike for example
physics, does not lend itself easily to abstractions or
generalisations. For example, Howard Temin, who
received a Nobel Prize for the discovery of reverse
transcriptase, said:

“Intellectually I felt that the central dogma
was true, but that it didn't explain my results
... Since this is biology, I didn't have any

philosophical problems with my results being
an exception – biology doesn't have the force
of physics.” (Temin, quoted in Kevles, 2008)

Traditional software engineering, however, focuses

on abstractions and generalisations. The successful
development of the Taverna workbench and
myExperiment web-site (Goble and De Roure, 2007) is
somewhat at odds with this tradition. De Roure and
Goble, both computer scientists, describe how they
first of all implemented software to meet the specific
needs of specific groups of biologists, and then
reflected on how these needs and hence the software
might be generalised (De Roure and Goble, 2009).
This bottom-up approach, as opposed to the more
traditional top-down approach of software engineering,
led to the production of software which proved very
successful in supporting biologists.

3.4. Concepts and terms in molecular biology

Knowledge gained and shared between research
scientists is largely liminal – at the threshold of the
science – and tends to be unstable, difficult to represent
and codify. This presents a particular challenge in the
case of molecular biology. Given both the separation
of the discipline into sub-disciplines and the difficulty
of generalisation as described above, molecular
biologists are content to accept that the same term
might refer to different concepts in different contexts,
and conversely, that the same concept might be
described by different terms.

By way of illustration, here are a couple of
examples. The first is that one of the authors of this
paper, an algebraist by background, was shocked to
find that a particular protein name did not uniquely
identify a protein. The second is that the term
‘construct’ is used differently even by protein
laboratories doing very similar wet lab work.

This lack of a one-to-one mapping between
concepts and terms poses clear challenges to the
software developer. For example, in the latter case, a
field labelled ‘construct’ in a database might contain
data with quite different meanings and import
according to the lab in which the data depositor works.

4. Discussion

In section 2 above, we discussed some challenges

facing scientific software developers in general, and in
section 3, considered some challenges specific to
molecular biology. The obvious question which now
arises is: where do we go from here?

Let us consider the generic challenges first. It is
clear that the context in which scientific software is
developed is, in general, different from the context of
commercial software development, see, Carver et al
(2007), Segal (forthcoming). For example, the
identification of requirements is entirely different. In
the scientific context, requirements are largely
emergent whereas in the commercial context, they are
largely pre-specified. Also different is the practice of
software testing, heavily dependent on the gut instincts
of the scientist as opposed to being methodical and
systematic.

Those methods, techniques etcetera of software
engineering which are commonly referred to as best
practice have largely been identified in the context of
commercial development, and applying them willy-
nilly to scientific developments can be very detrimental
(Segal, 2005, Segal and Morris, 2008).

In the authors’ opinion, the following is highly
desirable:-

• a taxonomy of different scientific development

contexts (for example, the heavily computational
simulation models used in climatology; the
heavily data intensive software used in molecular
biology)

• a taxonomy of the tools, techniques and methods
identified in software engineering

• a mapping between the two, so that each
development context is associated with the most
appropriate tools, techniques, methods.

This is the main aim of a network, ISS-net, (ISS =
Improving Scientific Software) being proposed by the
authors of this paper and others. Should any readers of
this paper be interested in contributing to such a
network, the authors warmly invite them to get in
touch.

As to the challenges specific to molecular biology,
so far as the authors are aware this paper is the first to
address them explicitly. Given this fact, we recognise
that section 3 is probably far from comprehensive and
possibly quite contentious. Our intention in putting
forward our ideas is not to argue that they are the last
word on the topic but rather to foster debate, and to
raise awareness of the challenges of software
development for molecular biology among scientific
software developers and molecular biologists. It is to
be hoped that this paper will provide a useful jumping-
off point for such debate.

5. References

"The CCP4 Suite: Programs for Protein Crystallography".
Acta Cryst. D50, (1994) 760-763

Carver, J., Kendall, R., Squires, S. and Post, D., 2007,
"Software Development Environments for Scientific and
Engineering Software: A Series of Case Studies."
Proceedings of the 29th International Conference on
Software Engineering. Minneapolis, USA. May 23-25, 2007.
p. 550-559.

De Roure, D., Goble, C., 2009, ‘Software design for
empowering scientists’, IEEE Software, 26(1) pp 88-95.

Goble, C., De Roure, D. (2007) ‘myExperiment: social
networking for workflow-using e-scientists’. In: Proceedings
of the 2nd workshop on Workflows in support of large-scale
science, Monterey, California, USA.
http://eprints.ecs.soton.ac.uk/15095/

Harrison, S. C, 2004, Whither structural biology? Nat Struct
Mol Biol, 11(1):12-15.

Kevles, D.J., 2008, ‘Howard Temin: Rebel of Evidence and
Reason’, in Rebels, Mavericks and Heretics in Biology.
Harman O.S., Dietrich M.R. (eds), Yale University

Knorr Cetina K, 1999. Epistemic Cultures: How the
Sciences Make Knowledge. Harvard University Press, 1999

Segal, J, and Morris, C., 2008, ‘Developing scientific
software’, IEEE Software, 25(4), 18-20

Segal J., 2005, ‘When software engineers met research
scientists: a case study’, Empirical Software Engineering,
10(4), 517-536.

Segal J, 2007, ‘Some problems of professional end user
developers’, VLHCC, IEEE Symposium on Visual
Languages and Human-Centric Computing, 2007, pp111-118

Segal J, 2008a, ‘Models of scientific software development’,
SECSE 08, Workshop on Software Engineering in
Computational Science and Engineering, workshop co-
located with ICSE 08, Leipzig, Germany.
http://www.cse.msstate.edu/~SECSE08/Papers/Segal.pdf

Segal, J, 2008b, ‘Scientists and Software Engineers: A Tale
of Two Cultures’, Proceedings of the Psychology of
Programming Interest Group, PPIG 08, Lancaster UK, pp
44-51, ISBN 978-1-86220-215-3

Segal, J. 2009, ‘Some challenges facing software engineers
developing software for scientists’, 2nd International Software
Engineering for Computational Scientists and Engineers
Workshop (SECSE ’09), ICSE 2009 Workshop, pp 9-14, doi:
10.1109/SECSE.2009.5069156.

Segal, J, forthcoming, ‘Software development cultures and
cooperation problems: a field study of the early stages of
development of software for a scientific community’ ,
Computer Supported Collaborative Work

Star S. and Ruhleder K, 1996, ‘Steps towards an ecology of
infrastructure design and access for large information
spaces’, Information Systems Research, 7(1), 111-134

Steitz, Thomas, 2007, ‘Collecting butterflies and the protein
structure initiative: The right questions?, Structure,
15(12):1523–1524

Tanford, C, Reynolds, J, 2004,. Nature's Robots: A
History of Proteins Oxford University Press.

Wolpert, L, Richards, A., 1988, A Passion for Science,
Oxford University Press.

