926 research outputs found

    Review of electrofuel feasibility - Prospects for road, ocean, and air transport

    Get PDF
    To meet climate targets the emissions of greenhouse gases from transport need to be reduced considerably. Electrofuels (e-fuels) produced from low-CO2 electricity, water, and carbon (or nitrogen) are potential low-climate-impact transportation fuels. The purpose of this review is to provide a technoeconomic assessment of the feasibility and potential of e-fuels for road, ocean, and air transport. The assessment is based on a review of publications discussing e-fuels for one or more transport modes. For each transport mode, (a) e-fuel options are mapped, (b) cost per transport unit (e.g. vehicle km) and carbon abatement costs are estimated and compared to conventional options, (c) prospects and challenges are highlighted, and (d) policy context is described. Carbon abatement costs for e-fuels (considering vehicle cost, fuel production and distribution cost) are estimated to be in the range 110-1250 € tonne-1 CO2 with e-gasoline and e-diesel at the high end of the range. The investigated combined biofuel and e-fuels production pathways (based on forest residues and waste) are more cost-competitive than the stand-alone e-fuel production pathways, but the global availability of sustainable biomass is limited making these pathways more constrained. While the potential for e-fuels to decarbonize the transport sector has been discussed extensively in the literature, many uncertainties in terms of production costs, vehicle costs and environmental performance remain. It is too early to rule out or strongly promote particular e-fuels for different transport modes. For e-fuels to play a significant role in transportation, their attractiveness relative to other transport options needs to be improved. Incentives will be needed for e-fuels to be cost-effective and increased clarity on how e-fuels are linked to existing policies is needed

    Power sector effects of alternative options for electrifying heavy-duty vehicles: go electric, and charge smartly

    Full text link
    In the passenger car segment, battery-electric vehicles (BEV) have emerged as the most promising option to decarbonize transportation. For heavy-duty vehicles (HDV), the technology space still appears to be more open. Aside from BEV, electric road systems (ERS) for dynamic power transfer are discussed, as well as indirect electrification with trucks that use hydrogen fuel cells or e-fuels. Here we investigate the power sector implications of these alternative options. We apply an open-source capacity expansion model to future scenarios of Germany with high renewable energy shares, drawing on detailed route-based truck traffic data. Results show that power sector costs are lowest for flexibly charged BEV that also carry out vehicle-to-grid operations, and highest for HDV using e-fuels. If BEV and ERS-BEV are not charged in an optimized way, power sector costs increase, but are still substantially lower than in scenarios with hydrogen or e-fuels. This is a consequence of the relatively poor energy efficiency of indirect HDV electrification, which outweighs its temporal flexibility benefits. We further find a higher use of solar PV for BEV and ERS-BEV, and a higher use of wind power and, to some extent, fossil generators for hydrogen and e-fuels

    Comparing e-Fuels and Electrification for Decarbonization of Heavy-Duty Transports

    Get PDF
    The freight sector is expected to keep, or even increase, its fundamental role for the major modern economies, and therefore actions to limit the growing pressure on the environment are urgent. The use of electricity is a major option for the decarbonization of transports; in the heavy-duty segment, it can be implemented in different ways: besides full electric-battery powertrains, electricity can be used to supply catenary roads, or can be chemically stored in liquid or gaseous fuels (e-fuels). While the current EU legislation adopts a tailpipe Tank-To-Wheels approach, which results in zero emissions for all direct uses of electricity, a Well-To-Wheels (WTW) method would allow accounting for the potential benefits of using sustainable fuels such as e-fuels. In this article, we have performed a WTW-based comparison and modelling of the options for using electricity to supply heavy-duty vehicles: e-fuels, eLNG, eDiesel, and liquid Hydrogen. Results showed that the direct use of electricity can provide high Greenhouse Gas (GHG) savings, and also in the case of the e-fuels when low-carbonintensity electricity is used for their production. While most studies exclusively focus on absolute GHG savings potential, considerations of the need for new infrastructures, and the technological maturity of some options, are fundamental to compare the different technologies. In this paper, an assessment of such technological and non-technological barriers has been conducted, in order to compare alternative pathways for the heavy-duty sector. Among the available options, the flexibility of using drop-in, energy-dense liquid fuels represents a clear and substantial immediate advantage for decarbonization. Additionally, the novel approach adopted in this paper allows us to quantify the potential benefits of using e-fuels as chemical storage able to accumulate electricity from the production peaks of variable renewable energies, which would otherwise be wasted due to grid limitations

    Kinetic modeling study on the combustion characterization of synthetic C3 and C4 alcohols for lean premixed prevaporized combustion

    Get PDF
    To reach sustainable aviation, one approach is to use electro-fuels (e-fuels) within the gas turbine engines. E-fuels are CO2-neutral synthetic fuels which are produced employing electrical energy generated from renewable resources, where the carbon is taken out of the atmosphere or from biomass. Our approach is, to find e-fuels, which can be utilized in the lean premixed prevapor-ized (LPP) combustion, where most of the non-CO2 emissions are prevented. One of the suitable e- fuel classes is alcohols with a low number of carbons. In this work, the autoignition properties of propanol isomers and butanol isomers as e-fuels were investigated in a high-pressure shock tube (HPST) at temperatures from 1200 to 1500 K, the pressure of 10 bar, and lean fuel-air conditions. Additional investigations on the low-temperature oxidation and flame speed of C3 and C4 alcohols from the literature were employed to develop a comprehensive mechanism for the prediction of ignition delay time (IDT) and laminar burning velocity (LBV) of the above-mentioned fuels. A numerical model based on newly developed chemical kinetics was applied to further study the IDT and LBV of fuels in comparison to the Jet-A surrogate at the engine-related conditions along with the emissions prediction of the model at lean fuel-air conditions. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    An integrated 0D/1D/3D numerical framework to predict performance, emissions, knock and heat transfer in ICEs fueled with NH3–H2 mixtures: The conversion of a marine Diesel engine as case study

    Get PDF
    In the maritime transportation, e-fuels represent a valid alternative to fossil energy sour- ces, in order to accomplish the European Union goals in terms of climate neutrality. Among the e-fuels, the ammonia-hydrogen mixtures can play a leading role, as the combination of the two allows to exploit the advantages of each one, simultaneously compensating their gaps. The main goal of the present publication is the proposal of a robust numerical frame- work based on 0D, 1D and 3D tools for CFD analyses of internal combustion engines fueled with ammonia-hydrogen mixtures. The 1D engine model provides boundary conditions for the multi-dimensional in- vestigations and estimates the overall engine performance. 3D in-cylinder detailed ana- lyses are proficiently used to predict combustion efficiency (via the well-established G-equation model supported by laminar flame speed correlations for both ammonia and hydrogen) and emissions (with a detailed chemistry based approach). Heat transfer and knock tendency are evaluated as well, by in-house developed models. As for the 0D/1D chemical kinetics calculations, firstly they support 3D analyses (for example via the gen- eration of ignition delay time tables). Moreover, they allow insights on aspects such as NOx formation, to individuate mixture qualities able to strongly reduce the emissions

    Supply curves of electricity-based gaseous fuels in the MENA region

    Get PDF
    The utilization of electricity-based fuels (e-fuels) is a potential strategy component for achieving greenhouse gas neutrality in the European Union (EU). As renewable electricity production sites in the EU itself might be scarce and relatively expensive, importing e-fuels from the Middle East and North Africa (MENA) could be a complementary and cost-efficient option. Using the energy system model Enertile, supply curves for hydrogen and synthetic methane in the MENA region are determined for the years 2030 and 2050 to evaluate this import option techno-economically. The model optimizes investments in renewable electricity production, e-fuel production chains, and local electricity transport infrastructures. Analyses of renewable electricity generation potentials show that the MENA region in particular has large low-cost solar power potentials. Optimization results in Enertile show for a weighted average cost of capital of 7% that substantial hydrogen production starts above 100 €/MWhH2 in 2030 and above 70 €/MWhH2 in 2050. Substantial synthetic methane production in the model results starts above 170 €/MWhCH4 in 2030 and above 120 €/MWhCH4 in 2050. The most important cost component in both fuel production routes is electricity. Taking into account transport cost surcharges, in Europe synthetic methane from MENA is available above 180 €/MWhCH4 in 2030 and above 130 €/MWhCH4 in 2050. Hydrogen exports from MENA to Europe cost above 120 €/MWhH2 in 2030 and above 90 €/MWhH2 in 2050. If exported to Europe, both e-fuels are more expensive to produce and transport in liquefied form than in gaseous form. A comparison of European hydrogen supply curves with hydrogen imports from MENA for 2050 reveals that imports can only be economically efficient if the two following conditions are met: Firstly, similar interest rates prevail in the EU and MENA; secondly, hydrogen transport costs converge at the cheap end of the range in the current literature. Apart from this, a shortage of land for renewable electricity generation in Europe may lead to hydrogen imports from MENA. This analysis is intended to assist in guiding European industrial and energy policy, planning import infrastructure needs, and providing an analytical framework for project developers in the MENA region

    Effect of refining variables on the properties and composition of JP-5

    Get PDF
    Potential future problem areas that could arise from changes in the composition, properties, and potential availability of JP-5 produced in the near future are identified. Potential fuel problems concerning thermal stability, lubricity, low temperature flow, combustion, and the effect of the use of specific additives on fuel properties and performance are discussed. An assessment of available crudes and refinery capabilities is given

    Future aviation fuels overview

    Get PDF
    The outlook for aviation fuels through the turn of the century is briefly discussed and the general objectives of the NASA Lewis Alternative Aviation Fuels Research Project are outlined. The NASA program involves the evaluation of potential characteristics of future jet aircraft fuels, the determination of the effects of those fuels on engine and fuel system components, and the development of a component technology to use those fuels

    A Circular Approach for Making Fischer–Tropsch E-fuels and E-chemicals From Biogas Plants in Europe

    Get PDF
    In a mature circular economy model of carbon material, no fossil compound is extracted from the underground. Hence, the C1 molecule from non-fossil sources such as biogas, biomass, or carbon dioxide captured from the air represents the raw material to produce various value-added products through carbon capture and utilization routes. Accordingly, the present work investigates the utilization of the full potential of biogas and digestate waste streams derived from anaerobic digestion processes available at the European level to generate synthetic Fischer–Tropsch products focusing on the wax fraction. This study estimates a total amount of available carbon dioxide of 33.9 MtCO2/y from the two above-mentioned sources. Of this potential, 10.95 MtCO2/y is ready-to-use as separated CO2 from operating biogas-upgrading plants. Similarly, the total amount of ready-to-use wet digestate corresponds to 29.1 Mtdig/y. Moreover, the potential out-take of Fischer–Tropsch feedstock was evaluated based on process model results. Utilizing the full biogas plants’ carbon potential available in Europe, a total of 10.1 Mt/h of Fischer–Tropsch fuels and 3.86 Mt/h of Fischer–Tropsch waxes can be produced, covering up to 79% of the global wax demand. Utilizing only the streams derived from biomethane plants (installed in Europe), 136 ton/h of FT liquids and 48 ton/h of FT wax can be generated, corresponding to about 8% of the global wax demand. Finally, optimal locations for cost-effective Fischer–Tropsch wax production were also identified
    • …
    corecore