1,660,727 research outputs found
Effect of sparsity-aware time–frequency analysis on dynamic hand gesture classification with radar micro-Doppler signatures
Dynamic hand gesture recognition is of great importance in human-computer interaction. In this study, the authors investigate the effect of sparsity-driven time-frequency analysis on hand gesture classification. The time-frequency spectrogram is first obtained by sparsity-driven time-frequency analysis. Then three empirical micro-Doppler features are extracted from the time-frequency spectrogram and a support vector machine is used to classify six kinds of dynamic hand gestures. The experimental results on measured data demonstrate that, compared to traditional time-frequency analysis techniques, sparsity-driven time-frequency analysis provides improved accuracy and robustness in dynamic hand gesture classification
A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition
The Koopman operator is a linear but infinite dimensional operator that
governs the evolution of scalar observables defined on the state space of an
autonomous dynamical system, and is a powerful tool for the analysis and
decomposition of nonlinear dynamical systems. In this manuscript, we present a
data driven method for approximating the leading eigenvalues, eigenfunctions,
and modes of the Koopman operator. The method requires a data set of snapshot
pairs and a dictionary of scalar observables, but does not require explicit
governing equations or interaction with a "black box" integrator. We will show
that this approach is, in effect, an extension of Dynamic Mode Decomposition
(DMD), which has been used to approximate the Koopman eigenvalues and modes.
Furthermore, if the data provided to the method are generated by a Markov
process instead of a deterministic dynamical system, the algorithm approximates
the eigenfunctions of the Kolmogorov backward equation, which could be
considered as the "stochastic Koopman operator" [1]. Finally, four illustrative
examples are presented: two that highlight the quantitative performance of the
method when presented with either deterministic or stochastic data, and two
that show potential applications of the Koopman eigenfunctions
Structuring visual exploratory analysis of skill demand
The analysis of increasingly large and diverse data for meaningful interpretation and question answering is handicapped by human cognitive limitations. Consequently, semi-automatic abstraction of complex data within structured information spaces becomes increasingly important, if its knowledge content is to support intuitive, exploratory discovery. Exploration of skill demand is an area where regularly updated, multi-dimensional data may be exploited to assess capability within the workforce to manage the demands of the modern, technology- and data-driven economy. The knowledge derived may be employed by skilled practitioners in defining career pathways, to identify where, when and how to update their skillsets in line with advancing technology and changing work demands. This same knowledge may also be used to identify the combination of skills essential in recruiting for new roles. To address the challenges inherent in exploring the complex, heterogeneous, dynamic data that feeds into such applications, we investigate the use of an ontology to guide structuring of the information space, to allow individuals and institutions to interactively explore and interpret the dynamic skill demand landscape for their specific needs. As a test case we consider the relatively new and highly dynamic field of Data Science, where insightful, exploratory data analysis and knowledge discovery are critical. We employ context-driven and task-centred scenarios to explore our research questions and guide iterative design, development and formative evaluation of our ontology-driven, visual exploratory discovery and analysis approach, to measure where it adds value to users’ analytical activity. Our findings reinforce the potential in our approach, and point us to future paths to build on
On Reduced Input-Output Dynamic Mode Decomposition
The identification of reduced-order models from high-dimensional data is a
challenging task, and even more so if the identified system should not only be
suitable for a certain data set, but generally approximate the input-output
behavior of the data source. In this work, we consider the input-output dynamic
mode decomposition method for system identification. We compare excitation
approaches for the data-driven identification process and describe an
optimization-based stabilization strategy for the identified systems
Dynamic data-driven model reduction: adapting reduced models from incomplete data
This work presents a data-driven online adaptive model reduction approach for systems that undergo dynamic changes. Classical model reduction constructs a reduced model of a large-scale system in an offline phase and then keeps the reduced model unchanged during the evaluations in an online phase; however, if the system changes online, the reduced model may fail to predict the behavior of the changed system. Rebuilding the reduced model from scratch is often too expensive in time-critical and real-time environments. We introduce a dynamic data-driven adaptation approach that adapts the reduced model from incomplete sensor data obtained from the system during the online computations. The updates to the reduced models are derived directly from the incomplete data, without recourse to the full model. Our adaptivity approach approximates the missing values in the incomplete sensor data with gappy proper orthogonal decomposition. These approximate data are then used to derive low-rank updates to the reduced basis and the reduced operators. In our numerical examples, incomplete data with 30–40 % known values are sufficient to recover the reduced model that would be obtained via rebuilding from scratch.United States. Air Force Office of Scientific Research (AFOSR MURI on multi-information sources of multi-physics systems, Award Number FA9550-15-1-0038)United States. Dept. of Energy (Applied Mathematics Program, Award DE-FG02 08ER2585)United States. Dept. of Energy (Applied Mathematics Program, Award DE-SC0009297
Time Series of Count Data : Modelling and Estimation
This paper compares various models for time series of counts which can account for discreetness, overdispersion and serial correlation. Besides observation- and parameter-driven models based upon corresponding conditional Poisson distributions, we also consider a dynamic ordered probit model as a flexible specification to capture the salient features of time series of counts. For all models, we present appropriate efficient estimation procedures. For parameter-driven specifications this requires Monte Carlo procedures like simulated Maximum likelihood or Markov Chain Monte-Carlo. The methods including corresponding diagnostic tests are illustrated with data on daily admissions for asthma to a single hospital. --Efficient Importance Sampling,GLARMA,Markov Chain Monte-Carlo,Observation-driven model,Parameter-driven model,Ordered Probit
Score-driven dynamic patent count panel data models
This paper suggests new Dynamic Conditional Score (DCS) count panel data models. We compare the statistical performance of static model, finite distributed lag model, exponential feedback model and different DCS count panel data models. For DCS we consider random walk and quasi-autoregressive formulations of dynamics. We use panel data for a large cross section of United States firms for period 1979 to 2000. We estimate models by using the Poisson quasi-maximum likelihood estimator with fixed effects. The estimation results and diagnostics tests suggest that the statistical performance of DCS-QAR is superior to that of alternative models
- …
