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Abstract 

This paper suggests new Dynamic Conditional Score (DCS) count panel data models. We compare the 
statistical performance of static model, finite distributed lag model, exponential feedback model and 
different DCS count panel data models. For DCS we consider random walk and quasi-autoregressive 
formulations of dynamics. We use panel data for a large cross section of United States firms for period 
1979 to 2000. We estimate models by using the Poisson quasi-maximum likelihood estimator with 
fixed effects. The estimation results and diagnostics tests suggest that the statistical performance of 
DCS-QAR is superior to that of alternative models. 
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1. Introduction

Gourieroux et al. (1984a, 1984b) and Wooldridge (1997a, 2002) motivate the use of the Quasi-

Maximum Likelihood Estimator (QMLE) for count panel data models. For QMLE, a pseudo

Log-Likelihood (LL) objective function is maximized, for which the pseudo probability dis-

tribution is within the Linear Exponential Family (LEF). An example of LEF is the Poisson

distribution. In this paper we use Poisson QMLE for patent count panel data models, hence

we use nit|Ft ∼ Poisson(λit) as a pseudo distribution for the patent count variable nit. For this

distribution (i) E(nit|Ft) = λit, (ii) the log of the conditional probability mass function is

ln f(nit|Ft) = −λit + nit lnλit − ln(nit!) (1)

(iii) the conditional score of nit with respect to λit is

∂ ln f(nit|Ft)

∂λit
=
nit

λit
− 1 = sit (2)

(iv) under correct specification of the conditional mean of nit, (si1, . . . , siT ) is a martingale

difference sequence with respect to Ft. In this paper, we suggest count panel data models for

which the error term eit is possibly serially correlated. We introduce serial correlation into eit

by the dynamic variable Ψit that is updated by the pseudo conditional score sit−1. We name

these models as Dynamic Conditional Score (DCS) count panel data models.

2. DCS patent count panel data models

In the body of literature Davis et al. (2003, 2005) and Harvey (2013) suggest dynamic time-

series models for Poisson dependent variables updated by the conditional score. In this paper we

extend those works since (i) we use panel data models with unobserved effects, (ii) we consider

autoregressive dynamics for the impact of conditional score, and (iii) we use robust Poisson

QMLE for statistical inference. The DCS count panel data model is

nit = exp(X ′itβ)vieit = exp(X ′itβ)vih(Ψit)εit (3)
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for a panel of i = 1, . . . , N firms and t = 1, . . . , T years, where Xit is a vector of explanatory

variables, vi represents unobserved effects, eit is a possibly serially correlated error term with

E(eit) = 1, Ψit is a possibly serially correlated term with E(Ψit) = 0, and εit is an i.i.d. term with

E(εit) = 1. For Ψit we consider two alternatives. First, the Random Walk (RW) specification is

Ψit = Ψit−1 + γ1sit−1 (4)

Second, the first-order Quasi-Autoregressive (QAR) specification (Harvey, 2013) is

Ψit = α1Ψit−1 + γ1sit−1 with |α1| < 1 (5)

We initialize both filters by parameter Ψ0. For h(Ψit) we use a function for which E[h(Ψit)] = 1

if E(Ψit) = 0. Some examples of h(Ψit) are

h(Ψit) = tanh(Ψit) + 1 (6)

h(Ψit) =
1− exp(−Ψit)

1 + exp(−Ψit)
+ 1 (7)

h(Ψit) = 2F (Ψit) (8)

where tanh(·) is the hyperbolic tangent function and F (·) is the distribution function of any

continuous symmetric probability distribution centered at zero.

3. Statistical inference

We estimate the parameters of DCS patent count panel data models by using QMLE with fixed

effects. We maintain the following assumptions:

(A1) (pre-sample data) Pre-sample data (nit : t = 1, . . . , P ) and (Xit : t = 1, . . . , P ) are

available. Let FP denote the information set generated by pre-sample data.

(A2) (fixed effects) Replace vi by pi(FP ) > 0, where pi(FP ) includes averages of nit and Xit

that are computed for the pre-sample data period.
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(A3) (correct specification of the mean) E(nit|Xit,Ψit,FP ) = exp(X ′itβ)pi(FP )h(Ψit).

(A4) (martingale difference sequence) (sit : t = 1, . . . , T ) is a martingale difference sequence

with respect to Ft = (Xit,Ψit,FP ).

(A5) (exogeneity) All variables in Xit are predetermined (Blundell et al., 2002) (alternatively,

all variables in Xit satisfy the sequential moment restrictions; Chamberlain, 1992 and

Wooldridge, 1997a, 1997b, 2002).

We estimate the parameters consistently by using the pooled Poisson QMLE method with

λit = exp(X ′itβ)pi(FP )h(Ψit), by solving the maximization problem

arg max
Θ

LL(Θ) = arg max
Θ

N∑
i=1

T∑
t=1

−λit + nit lnλit − ln(nit!) (9)

For this estimation the pseudo score is sit = nit/[exp(X ′itβ)pi(FP )h(Ψit)] − 1. For the pooled

Poisson QMLE, we use the asymptotic distribution and robust covariance matrix of parameter

estimates of Wooldridge (1997a, 2000).

4. Data

The source of the United States (US) utility patent dataset of this work is MicroPatent LLC.

The patent database includes the US Patent and Trademark Office (USPTO) patent number,

application date, publication date, USPTO patent number of cited patents, three-digit US

technological class and company name for each patent. We perform all data procedures according

to the recommendations of Hall et al. (2001). We count the number of successful patent

applications nit for each firm and year. We measure spillovers of knowledge among firms by the

log of the number of citations made to past patents of other firms of the same industry IAit and

to past patents of other firms of other industries IEit. Company specific information is from the

Standard & Poor’s Compustat data files. We use inflation-corrected log R&D expenses rit to

measure R&D investment. We created a match file and crossed the patent and firm datasets.

The dataset includes 488,149 US utility patents with application dates for period 1979 to 2000

(22 years) of 4,476 US firms (N = 4, 476). We divide the full data window into two subperiods.

4



First, the pre-sample data window is for period 1979 to 1983 (P = 5 years). Second, the in-

sample data window is for period 1984 to 2000 (T = 17 years). It is noteworthy that Blazsek

and Escribano (2010, 2016) use the same dataset.

5. Competing patent count panel data models

We compare five alternative multiplicative patent count panel data models. The first specifica-

tion is the Static Model (SM) for patent counts. For this model Ψit = 0 and X ′itβ is

X ′itβ = c+ ζ1t+ ζ2(t× rit) + ζ3r
2
it + κ0rit + ν0ritIAit + ξ0ritIEit (10)

where r2
it, IAit and IEit are motivated by Blazsek and Escribano (2010, 2016). The second

specification is the Finite Distributed Lag (FDL) model (Hausman et al., 1984) for which

X ′itβ = c+ ζ1t+ ζ2(t× rit) + ζ3r
2
it +

5∑
k=0

κkrit−k + rit

5∑
k=0

νkIAit−k + rit

5∑
k=0

ξkIEit−k (11)

and Ψit = 0. The third specification is the Exponential Feedback Model (EFM) (Wooldridge,

2005) for which X ′itβ is according to Equation 10 and h(Ψit) = exp[g(nit−1)] with g(nit−1) =

α11{nit−1 > 0} ln(nit−1). The fourth and fifth specifications are DCS count panel data models

with RW and QAR(1), respectively. For DCS X ′itβ is Equation 10 and h(Ψit) = tanh(Ψit) + 1.

We also considered alternatives of h(·), but estimation results were identical. We estimate all

models by Poisson QMLE with fixed effects, and we use pi(FP ) = exp(δ1ni + δ2ri) where the

averages are computed for pre-sample data (Blundell et al., 2002).

6. Empirical results

Table 1 presents the parameter estimates and robust standard errors for all models. Table 2

presents the Average Partial Effects (APE) of rit for cross-section and time-series dimensions.

Figure 1 presents the evolution of APE of rit for the cross-section dimension. APE is interpreted

as the average increase in nit due to a 1% increase in R&D expenses. It is noteworthy that Ψit

is averaged out by APE for DCS. Table 2 presents four model selection metrics: (i) mean LL;

(ii) mean Akaike Information Criterion (AIC); mean Bayesian Information Criterion (BIC); (iv)
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mean Hannan-Quinn Criterion (HQC) (Hamilton, 1994). All criteria suggest that the in-sample

statistical performance of DCS-QAR(1) is superior to the alternatives. Table 2 presents two

tests for the serial correlation of residuals εit. For the first test, we estimate the AR(1) model

εit = c∗ + ρεit−1 + u∗it (12)

by using robust System Ordinary Least Squares (SOLS) (Wooldridge, 2002). For the second

test, we use the Arellano–Bond (1991) dynamic panel data model

εit = c∗ + ρεit−1 + v∗i + u∗it (13)

and estimate the first-differenced model ∆εit = ρ∆εit−1 + ∆u∗it by using robust optimal System

Generalized Method of Moments (SGMM) (Wooldridge, 2002), for which we use (εit−2, . . . , εit−6)

as instrumental variables. For SGMM the Over-Identification Test Statistics (OITS) (Wooldridge,

2002) suggest that all instrumental variables are exogenous for all models. Both SOLS and

SGMM suggest significant first-order serial correlation of εit for SM, which motivates dynamic

specifications for patent count panel data. For EFM the SOLS and SGMM results are mixed,

but for DCS none of those estimates indicate significant first-order serial correlation.

Acknowledgments

Both authors acknowledge and give thanks for the helpful suggestions of Jeffrey Wooldridge.

Szabolcs Blazsek acknowledges financial support from Universidad Carlos III de Madrid and
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Table 1. Parameter estimates for Poisson QMLE with fixed effects

SM FDL EFM DCS-RW DCS-QAR

c −1.065∗∗∗(0.1692) −0.921∗∗∗(0.1451) −1.052∗∗∗(0.0774) 2.449∗∗∗(0.0644) 3.454∗∗∗(0.0887)

ζ1 0.068∗∗∗(0.0168) 0.054∗∗∗(0.0133) 0.053∗∗∗(0.0063) 0.067∗∗∗(0.0061) −0.012∗∗(0.0060)

ζ2 −0.009∗∗∗(0.0029) −0.005∗(0.0031) −0.012∗∗∗(0.0013) −0.009∗∗∗(0.0015) −0.009∗∗∗(0.0014)

ζ3 −0.029∗∗∗(0.0081) −0.033∗∗∗(0.0103) −0.021∗∗∗(0.0015) 0.023∗∗∗(0.0028) 0.027∗∗∗(0.0028)

κ0 1.014∗∗∗(0.1393) 0.609∗∗∗(0.1044) 0.455∗∗∗(0.0292) 0.186∗∗(0.0770) 0.175∗∗(0.0753)

κ1 NA 0.140∗(0.0766) NA NA NA

κ2 NA 0.149∗∗∗(0.0499) NA NA NA

κ3 NA 0.134∗(0.0791) NA NA NA

κ4 NA 0.013(0.0197) NA NA NA

κ5 NA 0.016(0.0479) NA NA NA

ν0 0.007(0.0052) 0.008(0.0057) 0.002∗∗∗(0.0005) 0.008∗∗∗(0.0013) 0.008∗∗∗(0.0017)

ν1 NA 0.005∗∗∗(0.0020) NA NA NA

ν2 NA 0.000(0.0051) NA NA NA

ν3 NA −0.009∗∗(0.0039) NA NA NA

ν4 NA −0.026∗∗∗(0.0079) NA NA NA

ν5 NA 0.042∗∗∗(0.0144) NA NA NA

ξ0 0.004(0.0102) 0.004(0.0111) 0.002∗∗(0.0010) 0.003(0.0027) 0.001(0.0033)

ξ1 NA −0.004(0.0056) NA NA NA

ξ2 NA 0.009(0.0150) NA NA NA

ξ3 NA 0.033∗∗∗(0.0115) NA NA NA

ξ4 NA 0.015(0.0093) NA NA NA

ξ5 NA −0.107∗∗∗(0.0358) NA NA NA

δ1 0.001∗∗∗(0.0004) 0.002∗∗∗(0.0005) 0.000(0.0002) 0.002∗∗∗(0.0002) 0.002∗∗∗(0.0002)

δ2 0.100(0.1453) 0.043(0.1119) −0.003(0.0292) 0.340∗∗∗(0.0819) 0.310∗∗∗(0.0793)

α1 NA NA 0.887∗∗∗(0.0227) 1.000(NE) 0.970∗∗∗(0.0318)

γ1 NA NA NA 0.099(0.0617) 0.121∗(0.0665)

Ψ0 NA NA NA −1.599∗∗∗(0.0623) −2.061∗∗∗(0.0722)

Notes: Not Available (NA); Not Estimated (NE). Robust standard errors are reported in parentheses. *, ** and

*** indicate parameter significance at the 10%, 5% and 1% levels, respectively.

8



Table 2. Statistical performance and residual diagnostics

SM FDL EFM DCS-RW DCS-QAR

Cross-section and time-series average partial effects:

3.5621 1.2803 0.6012 1.9681 2.1436

Statistical performance metrics:

mean LL −4.2907 −4.0618 −2.0681 −2.1143 −2.0600

mean AIC 8.5817 8.1242 4.1365 4.2290 4.1204

mean BIC 8.5818 8.1245 4.1366 4.2291 4.1205

mean HQC 8.5817 8.1242 4.1365 4.2290 4.1204

AR(1) model for residuals, robust SOLS:

ρ 0.0493 0.0461 0.0275 0.0022 0.0001

p-value ρ 0.0860 0.2211 0.0068 0.5052 0.3355

Arellano–Bond model for residuals, robust optimal SGMM:

ρ −0.0552 −0.0062 0.0022 −0.0013 0.0000

p-value ρ 0.0128 0.3626 0.2318 0.2930 0.1223

OITS 5.4054 4.8676 4.8216 5.2005 1.3606

p-value OITS 0.2482 0.3011 0.3061 0.2673 0.8510

Notes: Bold numbers indicate superior statistical performance.

9



Figure 1. Cross-section average partial effects of rit

Notes: SM (solid thin); FDL (dashed thin); EFM (short dashes thick); RW (dashed thick); QAR (solid thick)
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