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Abstract

This paper compares various models for time series of counts which can account for dis-

creetness, overdispersion and serial correlation. Besides observation- and parameter-driven

models based upon corresponding conditional Poisson distributions, we also consider a dy-

namic ordered probit model as a flexible specification to capture the salient features of time

series of counts. For all models, we present appropriate efficient estimation procedures. For

parameter-driven specifications this requires Monte Carlo procedures like simulated Maxi-

mum likelihood or Markov Chain Monte-Carlo. The methods including corresponding diag-

nostic tests are illustrated with data on daily admissions for asthma to a single hospital.

KEY WORDS: Efficient Importance Sampling; GLARMA; Markov Chain Monte-Carlo; Observation-

driven model; Parameter-driven model; Ordered Probit.



1 Introduction

Time series of observed counts arise in a wide variety of contexts including studies of incidences

of a certain disease (see Zeger, 1988 and Davis et al. 1999) or of discrete transaction price

movements on financial markets (see Liesenfeld et al. 2005 and Rydberg and Shephard, 2003).

A successful model for such series should take the following features regularly found in the data

into account: (1) a sometimes rather pronounced dependence structure; and (2) extra binomial

variation or overdispersion relative to the mean of the series. Moreover, in a regression context

an easy to use link function allowing for a straightforward interpretation of the effects of the

covariates is also a highly desirable modelling feature. Statistical models suitable for dependent

counts are usually classified as being either observation- or parameter-driven in nature. (While in

the latter case a latent dynamic process governs the conditional mean function, the dependence

structure in the former class is introduced via the incorporation of lagged values of the observed

counts directly into the mean function of the model.) A survey of the rather heterogeneous

literature in this area can be found in the monographs of Cameron and Trivedi (1998) and

Kedem and Fokianos (2002).

An interesting member of the class of observation driven models is undoubtedly the group of

integer valued autoregressive moving average (INARMA) models. Its decisive feature is the use

of appropriate thinning operations replacing the scalar multiplications in the Gaussian ARMA

framework of time series consisting of continuous data. Theoretical models covering a wide

range of possible correlation structures combined with equidispersed as well as overdispersed

discrete marginal distributions are available in the literature (see McKenzie, 2003 for an up

to date survey). However, only a limited range of models has been systematically analyzed in

terms of their practical applicability so far (see Jung and Tremayne, 2005, for a survey on some

recent work in this area). In particular, regression models that are able to cope with the two

aforementioned features of the data seem not to be readily available yet.

Another group of models in the observation-driven class are the generalized linear autore-

gressive moving average (GLARMA) models proposed, e.g., by Davis et al. (1999,2003) and

Shephard (1995). They extend the familiar generalized linear models framework to allow for

serial correlation as well as extra binomial variation in the data by specifying the log of the

conditional mean process as a linear function of previous counts. In contrast to the INARMA

specifications, it is straightforward to include covariates into those models. An additional appeal

of the GLARMA models is that their efficient estimation by maximum likelihood (ML) is easy

to implement. A similar group of observation-driven models only recently proposed by Heinen

(2003) are the autorgressive conditional Poisson (ACP) models.

The benchmark model in the class of parameter-driven specifications has been introduced by
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Zeger (1988). This model has successfully been applied to a wide range of predominantly bio-

metric problems. It extends the generalized linear models by incorporating into the conditional

mean function a latent autoregressive process which evolves independently of the past observed

counts. This process introduces autocorrelation as well as overdispersion into the model. The

main problem with this class of stochastic autorgressive mean (SAM) specifications is that their

efficient estimation is not straightforward and typically requires methods based on Monte Carlo

(MC) integration. Examples of such methods for fitting dynamic SAM models are the Monte-

Carlo EM approach proposed by Chan and Ledolter (1995), the Monte Carlo Newton Raphson

method of Kuk and Chen (1997), and the ML procedure based on Richard and Zhang’s (2004)

efficient importance sampling (EIS) applied by Jung and Liesenfeld (2001). However, as noted

by Davis et al. (2003), such estimation procedures are not yet rontinely available, especially, in

a context involving many covariates, and realistically long and numerous time series.

The purpose of this paper is twofold. Firstly, we propose to illustrate how to handle the

estimation problem of the Zeger-type SAM models by using EIS which represents a highly

flexible MC integration procedure which is easy to implement even for many covariates and long

time series for counts. In particular, we show how use EIS to perform not only a classical ML

estimation, but also a Markov Chain Monte-Carlo (MCMC) Bayesian posterior analysis of the

SAM models. Secondly, we compare this parameter-driven SAM model with observation-driven

alternatives with respect to their ability to account for dynamic and distributional properties of

count data. Especially, we consider Heinen’s (2003) ACP approch and the GLARMA model of

Davis el al. (2003) as well as a highly flexible approach based on an ordered probit specification.

In order to assess the dynamic and the distributional properties of the fitted models we report

on useful diagnostics.

The models and methods proposed in this paper are illustrated with data of daily admissions

for asthma to a single hospital (at Campbelltown) in the Sydney metropolitan area from 1

January 1990 to 31 December 1993, giving a sample of 1461 observations. This data set has

been previously analyzed by Davis et al. (1999) using a GLARMA model and in Davis et al.

(2000) using a generalized linear model analysis. Panel (a) of Figure 1 shows the time series

plot of the daily number of asthma presentations. The observed counts vary from 0 to 14 with

no deterministic trend evident. The mean of the series is 1.94 and its variance is 2.71 indicating

the possible presence of extra binomial variation in the marginal distribution of the data. The

autocorrelation properties of the data are depicted in Panel (c) and (d) of Figure 1. The counts

as well as the squared counts exhibit a relatively small but significant positive autocorrelation.

Additional features of the data that should be accounted for in an empirical analysis and which

have been revealed by the analysis in Davis et al. (1999) include seasonal cycles and day of the

week effects due to higher number of admittances on Sundays and Mondays.
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The remainder of the paper is organized as follows. Section 2 presents the parameter-driven

SAM model for count data and corresponding efficient estimation procedures. In Section 3, we

discuss the observation-driven ACP and GLARMA model. Dynamic ordered probit models as

a possible alternative to standard count data models are introduced in Section 4. Section 5

concludes.

2 Poisson model with a stochastic autoregressive mean

2.1 Specification

A prominent dynamic count data model is Zeger’s (1988) parameter-driven Poisson model with

a stochastic autoregressive mean. Let {yt, t : 1 → T} denote a univariate time series of counts,

let {xt} be a sequence of k-dimensional vectors of covariates, and let {ut} denote a latent non-

negative stochastic process. Then the conditional distribution of yt|(xt, ut) is assumed to be

Poisson with mean µt = exp{x′tϕ}ut denoted by

yt|xt, ut ∼ Po(exp{x′tϕ}ut), t : 1 → T, (1)

where ϕ = (ϕ1, ..., ϕk)′ is a vector of regression parameters. The latent process ut is typically

introduced to account for possible overdispersion and serial correlation within the data. A con-

venient assumption successfully used, e.g., by Chan and Ledolter (1995), Kuk and Cheng (1997)

and Jung and Liesenfeld (2001) is that λt = ln(ut) follows a Gaussian first-order autoregressive

process, satisfying

λt = δλt−1 + νεt, εt ∼ iidN(0, 1). (2)

To ensure stationarity of λt, it is assumed that |δ| < 1. Note that for δ = 0 and ν → 0, the latent

process vanishes and we obtain a standard Poisson regression model. A complete description of

the statistical properties of the SAM model (1) and (2) is provided by Davis et al. (1999).

Unlike the observation driven Poisson model discussed below, the mean function of the

parameter-driven SAM model is equipped with a separate dynamic latent error term. This

gives rise to a straightforward interpretation of the effects of the covariates on the count process

in the SAM model. Furthermore, its stochastic properties are easy to derive. On the other hand,

the dynamic latent process leads to a likelihood function which depends upon high-dimensional

integrals so that its efficient estimation is not straightforward. However, nowadays, a variety

of efficient classical estimation procedures (including the Monte Carlo EM algorithm of Chan

and Ledolter, 1995 and the Monte Carlo Newton Raphson method of Kuk and Cheng, 1997) are

available to estimate dynamic latent variable models like the SAM model within minutes. Here,

3



we propose to use the EIS procedure either to obtain ML parameter estimates and/or to perform

a Bayesian MCMC analysis of the SAM model. EIS is a MC integration technique developed

by Richard and Zhang (2004) for the evaluation of high-dimensional integrals. Apart from its

adaptability for a classical as well as for a Bayesian analysis of count data models with dynamic

latent variables, EIS has the attractive feature to be highly generic, since its basic structure

does not depend upon a specific model. (This is illustrated, e.g., in Jung and Liesenfeld (2001)

where EIS is applied for a classical analysis of the SAM model using different specifications of

the latent process obtained by different orders of serial dependence and different distributional

assumptions.)

In the following two subsections, we provide a description of EIS and its application to the

efficient estimation of the SAM model. For the general theory of EIS, see Richard and Zhang

(2004).

2.2 ML-EIS estimation

Estimation of the parameters θ = (ϕ′, δ, ν)′ in the parameter driven model (1) and (2) by direct

numerical maximization of the likelihood function is difficult since the likelihood does not have a

closed-form solution and cannot be evaluated by standard numerical procedures. In particular,

let Y = {yt}T
t=1, Λ = {λt}T

t=1, X = {xt}T
t=1, Ys = {yτ}s

τ=1 and Λs = {λτ}s
τ=1. Then, the

likelihood is the following T -fold integral:

L(θ; Y, X) =
∫

f(Y,Λ|X, θ)dΛ =
∫ T∏

t=1

ft(yt, λt|Λt−1, Yt−1, X, θ)dΛ, (3)

where f(Y, Λ|X, θ) represents the joint conditional density for (Y, Λ) given X, which can be

factorized into the sequence of conditional densities ft(·) for (yt, λt) given (Λt−1, Yt−1, X). For

convenience we set the initial value λ0 equal to E(λt) = 0. The assumptions relative to the

dynamic structure of the latent process and the conditional distribution of counts lead to the

following additional factorization:

ft(yt, λt|Λt−1, Yt−1, X, θ) = gt(yt|λt, xt, θ)pt(λt|λt−1, θ), (4)

where gt(·) denotes the conditional density of yt given (λt, xt) and pt(·) the conditional density

of λt given λt−1. These densities are given by

gt(yt|λt, xt, θ) ∝ exp(− exp{x′tϕ + λt}) exp{λt}yt (5)

pt(λt|λt−1, θ) ∝ exp{− 1
2ν2

(λt − δλt−1)2}, (6)

where multiplicative factors which do not depend upon λt are omitted.
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A natural tool to approximate this intractable likelihood is provided by MC integration. In

particular, the direct MC evaluation of the likelihood based on the factorizations (3) and (4) is

given by

L̄N (θ; Y,X) =
1
N

N∑

i=1

[
T∏

t=1

gt(yt|λ̃(i)
t , xt, θ)

]
, (7)

where {[λ̃(i)
1 , ..., λ̃

(i)
T ], i : 1 → N} are N independent trajectories from the natural sampler given

by the sequence of pt densities. However, it is well-known that such an MC approximation is

typically highly inefficient with a very large MC sampling variance. Essentially, this follows from

the fact that the λt’s sampled from the pt densities do not bear any resemblance to the true

values of the latent process under which the counts yt are obtained. A dramatic illustration of

the resulting inefficiency is provided by Danielsson and Richard (1993).

In order to resolve this efficiency problem, EIS replaces the initial sampling densities pt

by a sequence of auxiliary importance samplers {mt(λt|λt−1, at)}T
t=1 indexed by the auxiliary

parameters a = {at}T
t=1. Typically, the class of samplers mt include parametric extensions of

the initial samplers pt. For any choice of the auxiliary parameters, the integral in (3) can be

rewritten as

L(θ; Y,X) =
∫ T∏

t=1

ft(yt, λt|Λt−1, Yt−1, X, θ)
mt(λt|λt−1, at)

T∏

t=1

mt(λt|λt−1, at)dΛ, (8)

and the corresponding importance sampling MC estimate is given by

L̃N (θ; Y, X, a) =
1
N

N∑

i=1

[
T∏

t=1

ft(yt, λ̆
(i)
t |Λ̆(i)

t−1, Yt−1, X, θ)

mt(λ̆
(i)
t |λ̆(i)

t−1, at)

]
, (9)

where {[λ̆(i)
1 , ..., λ̆

(i)
T ], i : 1 → N} are N independent trajectories from the sequence of importance

sampling densities mt. Then, for a given parametric class of samplers mt, EIS aims at selecting

at’s that minimize the MC sampling variance of the MC approximation (9), which is tantamount

to selecting at’s such that in Equation (9) the denominator
∏

t mt be as close as possible to

being proportional to the numerator
∏

t ft. The sequential implementation of this minimization

is based on density kernels kt(λt, λt−1, at) of the mt densities, satisfying

mt(λt|λt−1, at) =
kt(λt, λt−1, at)
χt(λt−1, at)

, where χt(λt−1, at) =
∫

kt(λt, λt−1, at)dλt, (10)

and EIS requires solving a back-recursive sequence of least-squares problems of the form

(ĉt, ât) = arg min
ct,at

N∑

i=1

{
ln

[
ft

(
yt, λ̃

(i)
t

∣∣Λ̃(i)
t−1, Yt−1, X, θ

) · χt+1

(
λ̃

(i)
t , ât+1

)]
(11)

−ct − ln kt

(
λ̃

(i)
t , λ̃

(i)
t−1, at

)
}2

,
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for t : T → 1, where χT+1(·) ≡ 1. (A weighted least squares version of (11) is provided in

Richard and Zhang, 2004.) The N independent trajectories {[λ̃(i)
1 , ..., λ̃

(i)
T ], i : 1 → N} are drawn

from the sequence of pt densities, and the ct’s are constants to be estimated jointly with the

at’s. Finally, the MC EIS estimate of the likelihood is obtained by substituting â = {ât}T
t=1 for

a in (9) and ML-EIS estimates of θ are obtained by maximizing L̃N (θ;Y, X, â) with respect to θ

using a standard numerical optimizer. (For a detailed description of the implementation of EIS

see the Appendix.)

EIS can also be used to compute filtered estimates of the latent λt or of functions thereof (see,

e.g., Jung and Liesenfeld, 2001). Filtering enables us to perform diagnostic tests, e.g., based

on the standardized (Pearson) residuals zt = [yt−E(yt|Yt−1, Xt)]/var(yt|Yt−1, Xt)1/2, where the

conditional moments under the SAM model are given by

E(yt|Yt−1, Xt) = exp{x′tϕ}E(exp{λt}|Yt−1, Xt−1)

var(yt|Yt−1, Xt) = exp{x′tϕ}
[
E(exp{λt}|Yt−1, Xt−1) + exp{x′tϕ}var(exp{λt}|Yt−1, Xt−1)

]
.

If the model is correctly specified, zt has mean zero and unit variance and is serially uncorrelated

in the first- and second-order moments.

In order to check the adequacy of the distributional assumptions of the SAM model, we

use a generalization of the approach followed, e.g., by Kim et al. (1998) which is based on

predicted probabilities and which exploits Rosenblatt’s (1952) transformation of an absolutely

continuous conditional distribution into a uniform distribution. In particular, a generalization

to the discrete case can be based on residuals which are obtained as a sequence of simulated

random draws ũt from uniform distributions on the intervals [c(l)
t , c

(u)
t ], where c

(u)
t and c

(l)
t are

the predicted probabilities that the random variable yt be less than the actually observed count

yo
t and less than yo

t − 1, respectively, i.e.

ũt ∼ U(c(l)
t , c

(u)
t ), t : 1 → T, (12)

with

c
(u)
t = P (yt ≤ yo

t |Yt−1, Xt) and c
(l)
t = P (yt ≤ yo

t − 1|Yt−1, Xt). (13)

If the model is correctly specified, ũt is a serially independent random variable following a

uniform distribution on the interval [0, 1]. The sequence of conditional probabilities in Equation

(13) which can be represented as

P (yt ≤ ȳ|Yt−1, Xt) = E




ȳ∑

j=0

exp(− exp{x′tϕ + λt}) exp{λt}j

j!

∣∣∣∣Yt−1, Xt


 , (14)

can be produced by EIS integration (see Liesenfeld and Richard, 2003). Using the inverse of a

standard normal distribution function denoted by F−1
N , the variable ũt can be mapped into a
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N(0, 1)-distribution:

z∗t = F−1
N (ũt). (15)

Under the hypothesis that the model is correctly specified, the normalized residuals z∗t are

serially independent variables following a standard normal distribution.

2.3 A Bayesian analysis based on EIS

So far, we have discussed the application of EIS for classical inference of the SAM model. We

now show how to use EIS to carry out a Bayesian MCMC posterior analysis of the parameters

via Gibbs sampling. Under a Bayesian treatment, the vector of parameters θ is augmented

with the vector of the latent process Λ. Then, the Gibbs sampling approach of estimating the

SAM model involves drawing from the conditional posterior distribution f(θ|Y, X,Λ) for θ given

(Y,X,Λ) and from the conditional distribution f(Λ|Y, X, θ) for Λ given (Y, X, θ). The parameter

vector θ is estimated by reporting appropriate statistics for the simulations of (θ, Λ)|(Y,X) from

the joint posterior f(θ, Λ|Y, X).

The main difficulty with such an MCMC approach is that of simulating from the conditional

posterior f(Λ|Y, X, θ), which is an unknown high-dimensional distribution. This suggests to

sample the T -dimensional Λ using a Gibbs sampler based on T univariate conditional posteriors

λt|Λ\t, Y, X, θ, where Λ\t denotes Λ without the t-th element. However, a disadvantage of this

approach is that high correlation between the elements in Λ leads to a very slow convergence

of the MCMC algorithm, a particularly severe problem in time-series applications (see, e.g.,

Shephard and Pitt, 1997).

Here, we propose to use a combination of the EIS sampler with Tierney’s (1994) Acceptance-

Rejection Metropolis-Hastings (AR-MH) to simulate Λ|Y, X, θ as one block, which eliminates

the slow convergence due to high correlation in the Λ-elements. (For a detailed description of

the AR-MH procedure, see Chib and Greenberg, 1995.) The basis of such a procedure is the fact

that the EIS-sampler provides the best approximation (within a preassigned parametric class of

distributions) to the target density f(Λ|Y,X, θ) which has the form

f(Λ|Y, X, θ) ∝ f(Y, Λ|X, θ) =
T∏

t=1

ft(yt, λt|Λt−1, Yt−1, X, θ). (16)

Hence, one can expect that the EIS-sampling density provides an efficient proposal distribution

for the target density f(Λ|Y,X, θ) within an acceptance-rejection algorithm. The corresponding

functional approximation is of the form

f(Y, Λ|X, θ) ' M(Λ) :=
T∏

t=1

mt(λt|λt−1, ât)eĉt , (17)
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where ât and ĉt are the estimated coefficients from the EIS regression (11), and are implicit

functions of θ.

In the acceptance-rejection part of the MH-AR algorithm, the EIS sampling densities mt

are used to generate candidate trajectories Z̃ for Λ|(Y, X, θ) until acceptance with probability

min{f(Y, Z̃|X, θ)/M(Z̃), 1}. Because M(Λ) does not bound f(Y,Λ|X, θ), it follows that the

target density is not adequately sampled here. However, this can be corrected with an additional

Metropolis–Hastings step applied to the Λ–trajectories that come from the acceptance-rejection

step. This means that, given the previously sampled trajectory Λ̃(k), the candidate trajectory

from the acceptance-rejection step Λ̃ is accepted as the next trajectory Λ̃(k+1) with probability

min





f(Y, Λ̃|X, θ)min
{

f(Y, Λ̃(k)|X, θ),M(Λ̃(k))
}

f(Y, Λ̃(k)|X, θ)min
{

f(Y, Λ̃|X, θ),M(Λ̃)
} , 1



 ;

otherwise Λ̃(k+1) is set equal to Λ̃(k). After a sufficiently long ‘burn-in’, the draws {Λ̃(k)} repre-

sent a dependent sample from f(Λ|Y, X, θ). In the application below, the AR-MH step for Λ is

repeated 10 times before the parameters are updated in the Gibbs sequence.

An alternative block-sampling procedure which could also be used for sampling Λ is the

‘multi-move’ sampler of Shephard and Pitt (1997). Using a Taylor expansion, this sampler is

based on local approximations of the target density. In contrast, EIS provides corresponding

global approximations, which is important insofar as global approximations typically lead to

more efficient samplers than local ones.

To pursue a Bayesian analysis of the parameters θ, we need to specify corresponding prior

densities. For δ, we assume a Beta distribution conformably with the stationarity condition

δ ∈ (−1, 1). In particular, we employ for (δ + 1)/2 a Beta prior with parameters δ(1) > 1/2 and

δ(2) > 1/2. In our application we set δ(1) = 20 and δ(2) = 1.5, implying a prior mean of 0.86

and a prior standard deviation of 0.11. The resulting conditional posterior is non-conjugate. To

sample from this posterior, we use an independent MH sampler based on a Gaussian proposal

density (for details, see Kim et al., 1998). Furthermore, for ν2 we assume an inverted chi-squared

prior with p0s0/χ2
(p0). Then the conditional posterior is also an inverted chi-squared distribution

with ν2|Λ, Y, X, δ, ϕ ∼ [
∑T

t=1(λt − δλt−1)2 + p0s0]/χ2
(T+p0). In the application we set p0 = 10

and s0 = 0.01. Finally, we assume for ϕ a multivariate Normal prior with zero means and

a covariance matrix given by 100 · I, where I is the identity matrix, reflecting a large prior

uncertainty. To sample from the resulting non-conjugate conditional posterior, we follow Chib

and Winkelmann (2001) and use a MH algorithm based on a Gaussian proposal density which is

found by approximating the target density around its modal value (for details, see Winkelmann,

2003, p. 219).
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2.4 Application

ML-EIS estimation results for the parameter driven SAM model (1) and (2) based on a simulation

sample size N = 50 are given in Table 1. As in Davis et al. (1999) we include in xt dummy

variables for Mondays and Sundays, and Fourier series terms consisting of cos(2πkt/365) and

sin(2πkt/365), for k = 1, 2, 3, 4, which capture seasonal cycles. The ML estimation requires

approximately 31 BFGS iterations and take of the order of 5 minutes on a Pentium IV personal

computer for a code written in GAUSS. The parameter estimates are numerically very accurate

as indicated by the small numerical MC standard errors which are computed from 20 ML-EIS

estimations conducted under different random numbers.

The estimates of δ and ν are given by 0.900 and 0.096 and are statistically significant at

the 1 percent level. This indicates the presence of a highly persistent latent process generating

overdispersion and positive serial correlation within the count process. This is confirmed by a

likelihood ratio statistic testing the hypothesis δ = ν = 0, resulting in a value of 47.8. Fur-

thermore, our estimates of the parameters measuring the Sunday and Monday effect and the

impact of the seasonal patterns are very close to those obtained by Davis et al. (1999). The

fitted values from the SAM model are shown in Figure 2 along with the actual counts.

The results of the Bayesian posterior analysis based on the MCMC-EIS sampling scheme

are summarized in Table 2. These are obtained from 10,000 Gibbs iterations on the parameters

where the first 1000 are discarded. The table shows the posterior means and standard deviations

together with the corresponding MC standard errors. The MC standard errors are computed

using a spectral estimator, as proposed by Shephard and Pitt (1997). In particular, for M draws

of the parameters {θ(k), k : 1 → M} the MC standard errors are the square root of the diagonal

elements of

JM =
1
M

[
Γ0 +

2M

M − 1

LM∑

`=1

K
( `

LM

)
Γ`

]
, where Γ` =

1
M

M∑

k=`+1

(θ(k) − θ̄)(θ(k−`) − θ̄)′, (18)

LM is the bandwidth, and K(·) represents the Parzen kernel.

The small values of these MC standard errors shown in Table 2 indicate that the MCMC-EIS

procedure works reasonably efficient for the SAM model. This is confirmed by the autocorrela-

tion functions of the Gibbs draws of the parameters (not presented here). They indicate that

there is no significant autocorrelation at lags larger than 150 for the critical parameters δ and

ν, and no correlation at lags larger than 20 for the remaining parameters. Finally, note that the

MCMC-EIS estimates of all parameters are very close to ML-EIS estimates. Since we assumed,

especially for ϕ, very uninformative priors, the quasi-identical estimation results indicate that

the likelihood is very informative about the week effects and the seasonal cycles.

Table 3 presents the results of the diagnostic tests based on the standardized Pearson residuals
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zt and the normalized residuals z∗t from the ML-EIS estimation. The Ljung-Box statistic LB30(·)
for the residuals and the squared residuals including 30 lags, indicates that the SAM models

successfully accounts for the observed dynamics in the first and second-order moments of the

counts. Furthermore, the Jarque-Bera statistic JB(·) for z∗t has a marginal significance level of

8.2 percent indicating that normality cannot be rejected at the 5-percent level. The time series

and quantile-quantile plot of z∗t is displayed in Figure 2. The results suggest that even if the

model performs quite well, it seems to have slight problems to approximate the distribution of

the counts near the origin as well as in the right tail.

3 Autoregressive conditional Poisson model

3.1 Specification and Estimation

Although MC-techniques like EIS and MCMC are routinely used nowadays, the efficient es-

timation of the parameter-driven SAM model and the implementation of diagnostic tests re-

quires some computational effort. A simple alternative to the SAM model is Heinen’s (2003)

observation-driven ACP model. Like all observation-driven models, the ACP specification is

designed to allow the likelihood to be evaluated easily.

Let Yt−1 denote the information available on the series of counts yt up to and including time

t− 1. In the simplest model without any covariates, the counts are assumed to be Poisson

yt|Yt−1 ∼ Po(µt) , (19)

with an autoregressive conditional mean or intensity µt

E(yt|Yt−1) ≡ µt = ω +
p∑

j=1

αjyt−j +
q∑

j=1

βj µt−j (20)

and positive αj ’s, βj ’s and ω, ensuring the non-negativity of µt. The ACP model (19) and

(20) is similar in spirit to the autoregressive conditional duration (ACD) model of Engle and

Russell (1998) or the generalized autoregressive conditional heteroskedasticity (GARCH) model

of Bollerslev (1986). In particular, in all these specifications, the autoregressive structure is

introduced by an observable recursion on lagged endogenous variables. Heinen (2003) shows,

that as long as the sum of the autoregressive coefficients is less than one, the ACP specification

(19) and (20) is stationary and the expression for the unconditional mean of the counts is

identical to the mean of a Gaussian ARMA process.

In the following we focus on the most commonly used ACP(1,1) model with conditional mean

equation equal to

µt = ω + α yt−1 + β µt−1 . (21)
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It can be shown (see Heinen, 2003) that unconditionally the variance of the ACP(1,1) model

is always greater than its mean as long as α 6= 0. The ACP(1,1) is therefore able to cope with

extra binomial variation in an observed series of counts. The autocorrelation properties of the

ACP(1,1) model are summarized by its autocorrelation function which is given by

corr(yt, yt−s) = (α + β)s−1 α[1− β(α + β)]
1− (α + β)2 + α2

, s = 1, 2, 3, ... . (22)

Further stochastic properties of the ACP model as well as some generalizations are provided in

Heinen (2003). Note, that under the non-negativity and stationarity conditions for the ACP

model only positive serial correlation is possible. Hence, in contrast to the SAM specification,

a stationary ACP model does not satisfy the desideratum for dynamic count data models to

allow for positive as well as negative serial correlation. However, in most applications of count

data models, including that to the asthma data considered here, the case of negative serial

correlation is irrelevant. Especially, the sample autocorrelation function of the asthma data

depicted in Figure 1 clearly shows, that in our application this case can be be ignored. Moreover,

the restriction to positive autocorrelations is a property that the ACP has in common with

(G)ARCH-type models which are very successfully applied to accommodate the time varying

volatility found in many economic time series.

An alternative observation-driven model for stationary count processes which would allow

for positive and negative serial correlation is, e.g., that proposed in Davis et al. (1999, 2003),

where the log of the Poisson intensity is assumed to be a linear function of lagged standardized

counts. In particular, they use instead of the specification (20) a GLARMA specification based

on the following recursion for the log intensity:

lnµt ≡ wt = ω +
p∑

j=1

αj(wt−j + ξt−j) +
q∑

j=1

βj ξt−j (23)

where ξt = (yt − µt)/µρ
t , ρ ∈ (0, 1]. However, note that the stochastic properties for such a

log-linear alternative are typically more difficult to analyze than those for the ACP model.

Using an exponential link, the ACP model can easily be extended to include covariates

E(yt|Yt−1, xt) ≡ µ∗t = µt · exp(x′tϕ) , (24)

where {xt, t : 1 → T} is a sequence of k-dimensional vectors of covariates (without a constant

regressor) and ϕ an appropriate parameter vector.

Estimation of the parameter θ = (ϕ′, α, β, ω)′ of the ACP(1,1) model including covariates

is carried out by maximizing the log-likelihood function using numerical techniques routinely

available in standard software packages. The contribution of the t-th observation to the log-

likelihood is given by

lt(θ) = yt ln(µt · exp(x′tϕ))− µt · exp(x′tϕ)− ln(yt!) , (25)
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where the initial values in the recursion (21) µ0 and y0 are set equal to the sample mean of

the counts. Heinen (2003) shows that the resulting ML estimators are consistent irrespectively

of the correctness of the distributional assumption employed in (19). Note that like the SAM

model, the ACP specification could also be estimated by a Bayesian posterior analysis using,

e.g., the Gibbs sampling scheme proposed by Bauwens and Lubrano (1998) for GARCH-type

models.

For diagnostic checking of the assumed dynamic structure in the mean and variance one can

use the standardized (Pearson) residuals

zt =
yt − µ∗t√

µ∗t
, (26)

where the square root of µ∗t represents the conditional standard deviation of yt under the ACP

model. If the model is correctly specified, these residuals should have mean zero and variance

one and no significant serial correlation in the first and second-order moments. As for the SAM

model, one can compute the normalized residuals z∗t = F−1
N (ũt), where ũt is given by Equations

(12) and (13), which should be iidN(0, 1) under the correct specification.

3.2 Application

ML estimation of the observation driven ACP(1,1) model including the same covariates as the

SAM model was carried out in GAUSS with the results displayed in Table 4. The parameters

α and β are estimated to be 0.058 and 0.811 respectively. Both parameters are significantly

different from zero at the 1-percent level and positive, indicating the presence of a positive

correlation structure in the data. This result, which is consistent with the persistence found

under the SAM model, is confirmed by a likelihood ratio statistic testing the joint hypothesis

α = β = 0. The observed value of the test statistic is found to be 42.2 and significant at the

1-percent level. Our estimates of the Sunday and Monday dummies as well as the trigonometric

regressors are in very close accordance to those obtained under the SAM model and to those

obtained by Davis et al. (1999, Table 4) based on a GLARMA specification with a recursion of

the form (23). Finally, we note that the fitted log-likelihood is slightly better under the SAM

than under the ACP model, while the log-likelihood value of -2444.9 obtained for the preferred

GLARMA specification of Davis et al. (1999) with lags 1,3,7,10 for the AR components and

no MA component is slightly lower than that for the ACP model. (For further comparisons

of the fit of the ACP and SAM model one could use the formal tools for comparing non-

nested models proposed by Kim et al., 1998. In particular, they applied Bayes factors and

(simulated) likelihood-ratio tests for non-nested models to compare GARCH and stochastic

volatility models.)
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The quantile-quantile plot of the normalized residuals z∗t displayed in Figure 3 indicates

that the ACP model seems to have the same problems as the SAM specification with the

approximation of the distribution of the counts near the origin as well as in the right tail.

Diagnostic checks for the ACP residuals are presented in Table 5. The Jarque-Bera test rejects

normality at the 5-percent level, while the Ljung-Box test for the normalized and standardized

Pearson residuals shows that the ACP model fits the dynamics of data in the first and second-

order moments. Finally, it should be mentioned that the diagnostic checks of the residuals from

the GLARMA specification of Davis et al. (1999) (not presented here) show nearly the same

results as for the ACP and SAM model.

Taken all together, the empirical results for the asthma counts suggest that the ACP as

well as the SAM specification fit the dynamic behavior in the first and second-order moments

very well and the distributional properties reasonably well. However, both models seem to have

slight problems in the tails. In order to further improve the approximation of the distributional

characteristics one could substitute the Poisson distribution by a more flexible count data dis-

tribution. In the following section, we consider a flexible alternative based on an ordered probit

approach.

4 Dynamic ordered probit models for count data

4.1 Specification and Estimation

Analyzing count data, the Poisson distribution, which treats the data as generated by an un-

derlying point process, is usually the first choice. As an alternative Cameron and Trivedi (1998,

section 3.6) suggest inter alia the use of ordered probit models. Instead of modelling the discrete

data by an underlying point process, they can be interpreted as being the result of a continuous

latent process. In our application the latent variable could be interpreted as intensity of asthma

inducing influences that on crossing a threshold leads to an increase of one in the number of

observed asthma incidences. This implies that the unobservable intensity level y∗t in combination

with thresholds determine the observable discrete count categories yt according to

yt =





0, if −∞ < y∗t ≤ γ1

1, if γ1 < y∗t ≤ γ2

...

K, if γK < y∗t < ∞

, (27)

where the thresholds γj are unknown parameters to be estimated. In the application below we

use K + 1 = 8 categories, where the last category yt = K summarizes K and more asthma

incidences.
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Considering the modelling of yt without any covariates, the ordered probit approach repre-

sents the saturated model. The count categories are fully described by the K + 1 occurrence

probabilities pj = P (yt = j) = Φ(γj+1) − Φ(γj), j : 0 → K, where Φ denotes the cdf of the

standard normal distribution. The ML-estimates of the occurrence probabilities pj are the corre-

sponding relative frequencies p̂j , which can be used to obtain the ML-estimates of the thresholds

according to γ̂j = Φ−1(
∑j−1

h=0 p̂h). (Any other distribution function could be used replacing Φ in

the corresponding expressions leading to different estimated thresholds only.) Hence, the esti-

mates for the threshold parameters are those values of the γjs that equate predicted and actual

probabilities. Accordingly, compared to conventional count data models, the ordered probit

approach provides much more flexibility with respect to the adaption of the distributional prop-

erties of the data – a flexibility which is akin to that of non-parametric approaches and which

allows to capture possible over- and underdispersion in the count data. (As noted by Cameron

and Trivedi, 1998, an additional advantage of the ordered probit approach is that it is applicable

to count data with negative count like in the application of Hausman et al., 1992 who modeled

discrete changes of stock prices.) On the other hand note that the ordered probit model for

counts completely ignores the feature of count data of being cardinal which might lead to an

efficiency loss relative to an analysis based on standard count data models taking this property

into account.

Using a (linear) regression function for the latent process y∗t , the saturated ordered probit

can easily be extended to include covariates xt and to accommodate for positive as well as for

negative serial correlation. In particular, we consider the following specification:

y∗t = µt + x′tϕ + et, et ∼ iidN(0, 1), (28)

with

µt = αyt−1 + βµt−1, (29)

where ϕ is a vector of regression parameters without an intercept. The intercept term in the

specification for µt is also set equal to zero, which is imposed for identifiability reasons. (As dis-

cussed in Kukuk, 1994, the ordered probit probabilities are invariant with respect to monotone

transformations of (28) and of the thresholds γj .) According to this autoregressive conditional

ordered probit (ACOP) model the dynamics of the count data variables, which cannot be at-

tributed to the covariates, are captured by the observed recursion (29). Hence, the structure

of the ACOP is similar to that of the ACP model discussed in section 3. Furthermore, note

that in contrast to the ACP and SAM model, the dynamic and distributional features of the

ACOP specification are not directly linked to each other. This means that the parameters of

the ACOP model α and β, which govern the dynamic behavior, do not have a direct impact

on the properties of the unconditional distribution of the count categories. In contrast, the
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corresponding parameters in the SAM (δ) and the ACP model (α, β) directly enter the Poisson

parameter, which determines the distributional behavior of the counts and which generates a

close link between the dynamics and the distribution. Hence, one can expect that the ACOP

model accommodates more easily to the dynamic and distributional behavior of the data.

Estimation of the observation-driven ACOP model (27) – (29) can be performed by maximiz-

ing the log-likelihood function using standard numerical techniques. Defining a set of dummy

variables ytj = 1 if yt = j for j = 0, 1, 2 . . . , K (the last category summarizes K and more

incidences), the contribution of the t-th observation is given by

lt(θ) =
K∑

j=0

ytj · ln
[
Φ(γj+1 − µt − x′tϕ)− Φ(γj − µt − x′tϕ)

]
,

with γ0 = −∞ and γK+1 = ∞ and θ = (ϕ′, α, β, γ1, ..., γK)′. The initial values in the recursion

(29) µ0 and y0 are set equal to zero and the sample mean, respectively.

For diagnostic tests of the ACOP model one can use the standardized Pearson residuals

zt = [yt−E(yt|Yt−1, xt)]/var(yt|Yt−1, xt)1/2, where the conditional mean under the ACOP model

is

E(yt|Yt−1, xt) =
K∑

j=0

j · [Φ(γj+1 − µt − x′tϕ)− Φ(γj − µt − x′tϕ)
]
,

and the conditional variance is obtained analogously. If the model is correctly specified, zt has

mean zero and unit variance and is serially uncorrelated in the first- and second-order moments.

An alternative which can be expected to be a more powerful diagnostic test of the ACOP,

can be constructed using the residuals of the following state vector:

st = (st1, ..., stK)′ =





(0, 0, . . . , 0)′, if yt = 0

(1, 0, . . . , 0)′, if yt = 1
...

(0, 0, . . . , 1)′, if yt = K

,

with conditional probabilities

πtj = P (stj = 1|Yt−1, xt) = Φ(γj+1 − µt − x′tϕ)− Φ(γj − µt − x′tϕ).

The conditional expectation of the state vector st is given by E(st|Yt−1, xt) = πt = (πt1, ..., πtK)′

and the conditional variance covariance matrix by var(st|Yt−1, xt) = diag(πt)− πtπ
′
t. Then, the

corresponding standardized residuals are obtained as

vt = var(st|Yt−1, xt)−1/2[st − E(st|Yt−1, xt)], (30)

where var(st|Yt−1, xt)−1/2 denotes the inverse of the Cholesky factor of the conditional variance

covariance matrix. Under a correct specification, these residuals should be serially uncorrelated
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in the first and second-order moments with the following unconditional moments: E(vt) = 0 and

var(vt) = I. The joint hypothesis that there is no serial correlation in vt can be tested by the

multivariate version of the Portmanteau statistic proposed by Hosking (1980)

Q(L) = T
L∑

`=1

tr
[
Γυ(`)′Γυ(0)−1Γυ(`)Γυ(0)−1

]
, (31)

where Γυ(`) =
∑T

t=`+1 υtυ
′
t−`/(T − ` − 1). Under the null hypothesis, Q(L) is asymptotically

χ2-distributed with degrees of freedom equal to the difference between K2 · L and the number

of parameters to be estimated.

4.2 Application

ML-estimation of the dynamic ACOP model including the same covariates as the SAM and ACP

model was carried out in GAUSS. The results are given in Table 6. The estimated boundary

partitions {γj} are almost equally spaced. Furthermore, the estimates of the parameters α

and β in the recursion (29) are given by 0.055 and 0.761 and are statistically significant at any

conventional significance level. The likelihood ratio statistic for the hypotheses α = β = 0 results

in a value of 33.78. This indicates a strong positive serial correlation in the latent process y∗t
which is not captured by the included covariates and is consistent with the results for the SAM

and ACP model. The estimated impacts of the weekday dummies and the seasonal components

on y∗t are also in close accordance to those obtained under the SAM and ACP specification.

However, note that under the ACOP model the asymptotic standard errors for the parameter

estimates associated with the covariates are uniformly larger than the ML standard errors for the

SAM model (see, Table 1) and those for the ACP model (see, Table 4). These larger standard

errors can be interpreted as the result of the efficiency loss due to the fact that the ordinal

ACOP model ignores the cardinal meaning of the count data. On the other hand, a comparison

of the values for the Schwarz information criterion, which are given by 4957.2 (ACOP), 4981.8

(ACP), and 4979.7 (SAM), indicates that the ACOP provides, as expected, a much better fit to

the data than the pure count data models.

Similar to the SAM and ACP specifications, the diagnostic tests based on the standardized

Pearson residuals zt do not indicate any deficiency of the ACOP model: The sample mean and

variance of the zt’s are -0.0015 and 0.9683, and the Ljung-Box Statistics for zt and z2
t including

30 lags are 19.35 and 34.79 with p-values of 0.932 and 0.250. Hence, the ACOP model explains

the serial correlation of the counts in the first and second-order moments. The sample mean µ̂v

and the covariance matrix Σ̂v of the standardized state residuals vt as defined in Equation (30)
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are given by

µ̂v = (0.009, 0.008,−0.001,−0.010,−0.030,−0.034,−0.028)′

and

Σ̂v =




1.00 −0.00 −0.00 −0.00 0.01 0.02 0.01

1.00 0.00 0.00 0.02 0.03 0.02

1.00 0.00 0.03 0.03 0.03

1.02 0.03 0.03 0.03

0.86 0.03 0.03

0.76 0.02

0.68




.

The fact that µ̂v is very close to zero suggests that the stochastic behavior of the state vector st

in the first-order moment is well explained by the ACOP model. This implies that the empirical

frequencies of the count categories are closely approximated by the theoretical probabilities

under the ACOP model which shows that it fits the distributional properties very well. The

deviations of Σ̂v from the unity matrix, especially for the three largest count categories, reveals

that, the ACOP model has slight problems to account for the joint variation of the binary state

variables in st. However, note that this joint variation is related to aspects of the stochastic

behavior which are typically not particularly relevant for the modelling of count data.

The multivariate Portmanteau statistic Q(L) for the vector of standardized state residuals

including 10 lags is 605.3 with a p-value smaller than 0.0001 and the corresponding statistic for

the observed state vector st is given by 1326.0. This indicates that the ACOP explains some of

the observed serial dependence in the data but not all. A further inspection of the Ljung-Box

statistics for the individual elements of the vector of the standardized state residuals vtj (not

presented here) revealed that there is nearly no significant serial correlation in the vtj and v2
tj .

Hence, the serial dependence in vt detected by the multivariate Portmanteau statistic seems to

be related to a highly non-linear serial dependence in the count-categories, which is not captured

by the ACOP model.

5 Conclusions

This paper compares stochastic models for time series of counts and presents appropriate pro-

cedures to estimate these models and to perform diagnostic tests. In particular, we consider

Zeger’s (1988) parameter-driven Poisson model with a stochastic autoregressive mean (SAM) and

the observation-driven conditional autoregressive poisson (ACP) model introduced by Heinen

(2003). While the ACP model, like all observation-driven models, is designed to allow the
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likelihood to be evaluated easily, the likelihood evaluation for the SAM model requires high-

dimensional integration. To address this integration problem, we propose to use the efficient

importance sampling (EIS) procedure of Richard and Zhang (2004). EIS can be used, to es-

timate the SAM by ML as well as to carry out a Bayesian MCMC posterior analysis of the

parameters via Gibbs sampling. As a flexible alternative to the ACP and SAM model, which

are based on a conditional Poisson distribution, we consider a dynamic ordered probit model as a

specification to capture the salient features of time series of counts. In particular, we propose an

autoregressive conditional ordered probit (ACOP) with an observable autoregressive conditional

mean of the underlying latent process.

The models, the corresponding estimation procedures and the diagnostics are illustrated with

data on daily admissions for asthma to a single hospital in the Sydney metropolitan area from 1

January 1990 to 31 December 1993, with a sample of 1461 observations. All considered models

include explanatory variables for a Sunday effect, a Monday effect and a seasonal pattern. The

empirical results reveal that the estimated impact of the explanatory variables under the SAM

model is very close to those under the ACP model. Furthermore, both specifications can account

for the serial correlation in the first and second-order moments of the count data and provide,

except for slight problems in tails, a reasonable approximation of the distributional properties.

Finally, the ACOP closely approximates the empirical distribution and the dynamics in the

mean and variance of the count data and confirms the results about the impact of the weekday

dummies and seasonal components on the admission for asthma obtained under the ACP and

SAM specification.
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Appendix

Implementation of the EIS-algorithm

This appendix details the EIS implementation for the observation-driven SAM model (1) and (2).

Using a parametric extension of the initial samplers pt given by Equation (6), the corresponding

density kernel of the Gaussian importance samplers mt can be written as

kt(λt, λt−1, at) ∝ pt(λt|λt−1, θ) exp
{
−1

2
[
αtλ

2
t − 2βtλt

]}
, (A.1)

with at = (αt, βt)′. The associated integrating constant is

χt(λt−1, at) ∝ exp
{
−1

2

[
δλt−1

ν2
− κ2

t

σ2
t

]}
, (A.2)

where κt and σ2
t are the mean and variance of the importance sampler mt, which are given by

σ2
t = ν2/(1 + ν2αt) and κt = σ2

t (βt + δλt−1/ν2). Note, that under this parametrization of mt

the initial sampler pt cancels out in the EIS-regressions (11). In particular, the EIS-regression

for period t is a linear least-squares problem with a dependent variable given by

− exp{x′tβ + λ̃
(i)
t }+ ytλ̃

(i)
t + lnχt+1(λ̃

(i)
t , ât+1),

and the regressors: intercept, λ̃
(i)
t , [λ̃(i)

t ]2.

Based on these functional forms, the EIS-MC evaluation of the likelihood requires the follow-

ing simple steps:

Step (1) Generate N independent trajectories from the pt densities.

Step (2) Use these trajectories to run for each t : T → 1 the EIS regression.

Step (3) Use the estimated regression coefficients to obtain the means κt and variances

σ2
t of the Gaussian EIS samplers mt.

Step (4) Generate N independent trajectories from the mt densities which are used to

evaluate the likelihood according to (9).

In order to achieve maximally efficient EIS-samplers only a small number of iterations on the

EIS-algorithm is required, where the initial sampling densities pt are replaced by the previous

stage importance sampler.
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Table 1. ML-EIS Parameter Estimates of the SAM model

Parameters Estimates Asy. s.e. MC s.e.

δ 0.9003 0.0384 0.00055

ν 0.0961 0.0243 0.00043

Intercept 0.5175 0.0324 0.00008

Sunday effect 0.2287 0.0451 0.00002

Monday effect 0.2323 0.0469 0.00002

cos(2πt/365) -0.1629 0.0277 0.00001

sin(2πt/365) 0.3583 0.0334 0.00002

cos(4πt/365) -0.0654 0.0267 0.00002

sin(4πt/365) 0.0170 0.0229 0.00002

cos(6πt/365) -0.0761 0.0204 0.00002

sin(6πt/365) 0.0062 0.0240 0.00001

cos(8πt/365) -0.1419 0.0226 0.00004

sin(8πt/365) -0.0524 0.0267 0.00002

Log–Likelihood -2442.49 0.0446

The ML-EIS estimates are based on a MC-sample size of N = 50 and three EIS iterations. Asymptotic (statistical)

standard errors are obtained from a numerical approximation to the Hessian and MC (numerical) standard errors

were computed from 20 ML-EIS estimations conducted under different sets of CRNs.
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Table 2. MCMC-EIS Posterior Analysis of the SAM model

Parameters Mean Std. Deviation MC s.e.

δ 0.9110 0.0279 0.0024

ν 0.0995 0.0153 0.0018

Intercept 0.5141 0.0402 0.0008

Sunday effect 0.2279 0.0513 0.0004

Monday effect 0.2313 0.0510 0.0004

cos(2πt/365) -0.1631 0.0518 0.0016

sin(2πt/365) 0.3602 0.0526 0.0013

cos(4πt/365) -0.0639 0.0506 0.0014

sin(4πt/365) 0.0159 0.0491 0.0011

cos(6πt/365) -0.0755 0.0464 0.0012

sin(6πt/365) 0.0046 0.0471 0.0009

cos(8πt/365) -0.1398 0.0430 0.0008

sin(8πt/365) -0.0513 0.0434 0.0009

The Posterior means and posterior standard deviations are obtained from 10,000 Gibbs iterations (discarding the

first 1000 draws). The MC standard errors are computed using a Parzen window with bandwidth of LM = 1000.

The EIS proposal densities for the AR-MH sampler are obtained from EIS-regressions based on a MC sample size

N = 30 and four EIS iterations.
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Table 3. Diagnostics for the SAM model based on the ML-EIS estimates

LB30(zt) LB30(z2
t ) Skewness (z∗t ) Kurtosis (z∗t ) JB(z∗t ) LB30(z∗t ) LB30(z∗

2

t )

20.15 29.40 0.015 3.285 4.991 26.91 27.32

(0.912) (0.497) (0.082) (0.627) (0.606)

p-values are given in parentheses. The values of the LB30 statistic for the counts yt and the squared counts y2
t

are 1056.6 and 762.8.
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Table 4. ML Parameter Estimates of the ACP model

Parameters Estimates Asy. s.e.

α 0.0576 0.0141

β 0.8110 0.0566

ω 0.2132 0.0799

Sunday effect 0.2464 0.0516

Monday effect 0.2364 0.0512

cos(2πt/365) -0.1031 0.0322

sin(2πt/365) 0.2451 0.0367

cos(4πt/365) -0.0458 0.0293

sin(4πt/365) 0.0211 0.0268

cos(6πt/365) -0.0567 0.0282

sin(6πt/365) 0.0119 0.0279

cos(8πt/365) -0.1177 0.0282

sin(8πt/365) -0.0146 0.0290

Log–Likelihood -2443.16
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Table 5. Diagnostics for the ACP model

LB30(zt) LB30(z2
t ) Skewness (z∗t ) Kurtosis (z∗t ) JB(z∗t ) LB30(z∗t ) LB30(z∗

2

t )

20.12 28.64 0.100 3.276 7.119 18.29 27.78

(0.913) (0.537) (0.028) (0.954) (0.582)

p-values are given in parentheses. The values of the LB30 statistic for the counts yt and the squared counts y2
t

are 1056.6 and 762.8.
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Table 6. ML estimates of the Ordered Probit (ACOP) model

Parameters Estimates Asy. s.e. Parameters Estimates Asy. s.e.

α 0.0550 0.0119 γ1 -0.4969 0.1009

β 0.7608 0.0597 γ2 0.4182 0.0996

Sunday effect 0.3010 0.0791 γ3 1.1473 0.1016

Monday effect 0.3262 0.0803 γ4 1.7047 0.1056

cos(2πt/365) -0.1399 0.0505 γ5 2.1763 0.1127

sin(2πt/365) 0.3337 0.0512 γ6 2.5497 0.1224

cos(4πt/365) -0.0635 0.0410 γ7 2.9997 0.1428

sin(4πt/365) 0.0289 0.0957

cos(6πt/365) -0.0716 0.0383

sin(6πt/365) 0.0104 0.0934

cos(8πt/365) -0.1440 0.0414

sin(8πt/365) -0.0253 0.0405

Log–Likelihood -2409.38

Twelve values of yt greater than 6 are censored to 7.
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Figure 1. Panel (a): Time series plot of the asthma counts; Panel (b): Histogram of the asthma counts; Panel (c):

Sample autocorrelation function of the asthma counts; Panel (d): Sample autocorrelation function of the squared

asthma counts.
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Figure 2. Panel (a): Asthma counts yt (dotted line) with the conditional mean E(yt|Yt−1, Xt) under the SAM

model (solid line); Panel (b): Sample autocorrelation function of the standardized Pearson residuals from the SAM

zt (squares) and z2
t (triangles); Panel (c): Normalized residuals from the SAM z∗t ; Panel (d): Quantile-quantile

plot of the normalized residuals z∗t from the SAM model (the dashed line plots the quantiles of the standard

normal distribution against the quantiles of the standard normal and the solid line plots the sorted values of z∗t

against the quantiles of the standard normal).
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Panel (a): Asthma counts yt (dotted line) with the conditional mean E(yt|Yt−1, Xt) under the ACP model

(solid line); Panel (b): Sample autocorrelation function of the standardized Pearson residuals from the ACP zt

(squares) and z2
t (triangles); Panel (c): Normalized residuals from the ACP z∗t ; Panel (d): Quantile-quantile plot

of the normalized residuals z∗t from the ACP model (the dashed line plots the quantiles of the standard normal

distribution against the quantiles of the standard normal and the solid line plots the sorted values of z∗t against

the quantiles of the standard normal).
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