1 research outputs found

    Epigenetic Changes in Host Ribosomal DNA Promoter Induced by an Asymptomatic Plant Virus Infection

    Get PDF
    [EN] DNA cytosine methylation is one of the main epigenetic mechanisms in higher eukaryotes and is considered to play a key role in transcriptional gene silencing. In plants, cytosine methylation can occur in all sequence contexts (CG, CHG, and CHH), and its levels are controlled by multiple pathways, including de novo methylation, maintenance methylation, and demethylation. Modulation of DNA methylation represents a potentially robust mechanism to adjust gene expression following exposure to different stresses. However, the potential involvement of epigenetics in plant-virus interactions has been scarcely explored, especially with regard to RNA viruses. Here, we studied the impact of a symptomless viral infection on the epigenetic status of the host genome. We focused our attention on the interaction between Nicotiana benthamiana and Pelargonium line pattern virus (PLPV, family Tombusviridae), and analyzed cytosine methylation in the repetitive genomic element corresponding to ribosomal DNA (rDNA). Through a combination of bisulfite sequencing and RT-qPCR, we obtained data showing that PLPV infection gives rise to a reduction in methylation at CG sites of the rDNA promoter. Such a reduction correlated with an increase and decrease, respectively, in the expression levels of some key demethylases and of MET1, the DNA methyltransferase responsible for the maintenance of CG methylation. Hypomethylation of rDNA promoter was associated with a five-fold augmentation of rRNA precursor levels. The PLPV protein p37, reported as a suppressor of post-transcriptional gene silencing, did not lead to the same effects when expressed alone and, thus, it is unlikely to act as suppressor of transcriptional gene silencing. Collectively, the results suggest that PLPV infection as a whole is able to modulate host transcriptional activity through changes in the cytosine methylation pattern arising from misregulation of methyltransferases/demethylases balance.This work was funded by Ministerio de Economia y Competitividad (MINECO, Spain)-European Regional Development Fund (FEDER) (grants BFU2012-36095 and BFU2015-70261 to C.H) and by the Generalitat Valenciana (GVA, Valencia, Spain) (grant PROMETEO/2019/012 to C.H.). E.H. was the recipient of a contract from MINECO-FEDER and M.P.-C. was the recipient of contracts from MINECO-FEDER and GVA.Pérez-Cañamás, M.; Hevia, E.; Hernandez Fort, C. (2020). Epigenetic Changes in Host Ribosomal DNA Promoter Induced by an Asymptomatic Plant Virus Infection. Biology. 9(5):1-13. https://doi.org/10.3390/biology9050091S11395Wang, A. (2015). Dissecting the Molecular Network of Virus-Plant Interactions: The Complex Roles of Host Factors. Annual Review of Phytopathology, 53(1), 45-66. doi:10.1146/annurev-phyto-080614-120001Garcia‐Ruiz, H. (2019). Host factors against plant viruses. Molecular Plant Pathology, 20(11), 1588-1601. doi:10.1111/mpp.12851Garcia-Ruiz, H. (2018). Susceptibility Genes to Plant Viruses. Viruses, 10(9), 484. doi:10.3390/v10090484Han, G. (2019). Origin and evolution of the plant immune system. New Phytologist, 222(1), 70-83. doi:10.1111/nph.15596García, J. A., & Pallás, V. (2015). Viral factors involved in plant pathogenesis. Current Opinion in Virology, 11, 21-30. doi:10.1016/j.coviro.2015.01.001Whitham, S. A., Yang, C., & Goodin, M. M. (2006). Global Impact: Elucidating Plant Responses to Viral Infection. Molecular Plant-Microbe Interactions®, 19(11), 1207-1215. doi:10.1094/mpmi-19-1207Eichten, S. R., Schmitz, R. J., & Springer, N. M. (2014). Epigenetics: Beyond Chromatin Modifications and Complex Genetic Regulation. Plant Physiology, 165(3), 933-947. doi:10.1104/pp.113.234211Feng, S., Jacobsen, S. E., & Reik, W. (2010). Epigenetic Reprogramming in Plant and Animal Development. Science, 330(6004), 622-627. doi:10.1126/science.1190614Matzke, M. A., Kanno, T., & Matzke, A. J. M. (2015). RNA-Directed DNA Methylation: The Evolution of a Complex Epigenetic Pathway in Flowering Plants. Annual Review of Plant Biology, 66(1), 243-267. doi:10.1146/annurev-arplant-043014-114633Zhang, H., Lang, Z., & Zhu, J.-K. (2018). Dynamics and function of DNA methylation in plants. Nature Reviews Molecular Cell Biology, 19(8), 489-506. doi:10.1038/s41580-018-0016-zMovahedi, A., Sun, W., Zhang, J., Wu, X., Mousavi, M., Mohammadi, K., … Zhuge, Q. (2015). RNA-directed DNA methylation in plants. Plant Cell Reports, 34(11), 1857-1862. doi:10.1007/s00299-015-1839-0Matzke, M. A., & Mosher, R. A. (2014). RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nature Reviews Genetics, 15(6), 394-408. doi:10.1038/nrg3683Gong, Z., Morales-Ruiz, T., Ariza, R. R., Roldán-Arjona, T., David, L., & Zhu, J.-K. (2002). ROS1, a Repressor of Transcriptional Gene Silencing in Arabidopsis, Encodes a DNA Glycosylase/Lyase. Cell, 111(6), 803-814. doi:10.1016/s0092-8674(02)01133-9Penterman, J., Zilberman, D., Huh, J. H., Ballinger, T., Henikoff, S., & Fischer, R. L. (2007). DNA demethylation in the Arabidopsis genome. Proceedings of the National Academy of Sciences, 104(16), 6752-6757. doi:10.1073/pnas.0701861104Zhu, J.-K. (2009). Active DNA Demethylation Mediated by DNA Glycosylases. Annual Review of Genetics, 43(1), 143-166. doi:10.1146/annurev-genet-102108-134205Baulcombe, D. C., & Dean, C. (2014). Epigenetic Regulation in Plant Responses to the Environment. Cold Spring Harbor Perspectives in Biology, 6(9), a019471-a019471. doi:10.1101/cshperspect.a019471Ding, B., & Wang, G.-L. (2015). Chromatin versus pathogens: the function of epigenetics in plant immunity. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00675Butterbach, P., Verlaan, M. G., Dullemans, A., Lohuis, D., Visser, R. G. F., Bai, Y., & Kormelink, R. (2014). Tomato yellow leaf curl virus resistance by Ty-1 involves increased cytosine methylation of viral genomes and is compromised by cucumber mosaic virus infection. Proceedings of the National Academy of Sciences, 111(35), 12942-12947. doi:10.1073/pnas.1400894111Raja, P., Sanville, B. C., Buchmann, R. C., & Bisaro, D. M. (2008). Viral Genome Methylation as an Epigenetic Defense against Geminiviruses. Journal of Virology, 82(18), 8997-9007. doi:10.1128/jvi.00719-08Yang, L.-P., Fang, Y.-Y., An, C.-P., Dong, L., Zhang, Z.-H., Chen, H., … Guo, H.-S. (2013). C2-mediated decrease in DNA methylation, accumulation of siRNAs, and increase in expression for genes involved in defense pathways in plants infected with beet severe curly top virus. The Plant Journal, 73(6), 910-917. doi:10.1111/tpj.12081Kanazawa, A., Inaba, J., Shimura, H., Otagaki, S., Tsukahara, S., Matsuzawa, A., … Masuta, C. (2010). Virus-mediated efficient induction of epigenetic modifications of endogenous genes with phenotypic changes in plants. The Plant Journal, 65(1), 156-168. doi:10.1111/j.1365-313x.2010.04401.xKon, T., & Yoshikawa, N. (2014). Induction and maintenance of DNA methylation in plant promoter sequences by apple latent spherical virus-induced transcriptional gene silencing. Frontiers in Microbiology, 5. doi:10.3389/fmicb.2014.00595Otagaki, S., Kawai, M., Masuta, C., & Kanazawa, A. (2011). Size and positional effects of promoter RNA segments on virus-induced RNA-directed DNA methylation and transcriptional gene silencing. Epigenetics, 6(6), 681-691. doi:10.4161/epi.6.6.16214Diezma‐Navas, L., Pérez‐González, A., Artaza, H., Alonso, L., Caro, E., Llave, C., & Ruiz‐Ferrer, V. (2019). Crosstalk between epigenetic silencing and infection by tobacco rattle virus in Arabidopsis. Molecular Plant Pathology, 20(10), 1439-1452. doi:10.1111/mpp.12850Wang, C., Wang, C., Xu, W., Zou, J., Qiu, Y., Kong, J., … Zhu, S. (2018). Epigenetic Changes in the Regulation of Nicotiana tabacum Response to Cucumber Mosaic Virus Infection and Symptom Recovery through Single-Base Resolution Methylomes. Viruses, 10(8), 402. doi:10.3390/v10080402Wang, C., Wang, C., Zou, J., Yang, Y., Li, Z., & Zhu, S. (2019). Epigenetics in the plant–virus interaction. Plant Cell Reports, 38(9), 1031-1038. doi:10.1007/s00299-019-02414-0Scheets, K., Jordan, R., White, K. A., & Hernández, C. (2015). Pelarspovirus, a proposed new genus in the family Tombusviridae. Archives of Virology, 160(9), 2385-2393. doi:10.1007/s00705-015-2500-5Castaño, A., & Hernández, C. (2005). Complete nucleotide sequence and genome organization of Pelargonium line pattern virus and its relationship with the family Tombusviridae. Archives of Virology, 150(5), 949-965. doi:10.1007/s00705-004-0464-yCastaño, A., Ruiz, L., & Hernández, C. (2009). Insights into the translational regulation of biologically active open reading frames of Pelargonium line pattern virus. Virology, 386(2), 417-426. doi:10.1016/j.virol.2009.01.017Pérez-Cañamás, M., & Hernández, C. (2015). Key Importance of Small RNA Binding for the Activity of a Glycine-Tryptophan (GW) Motif-containing Viral Suppressor of RNA Silencing. Journal of Biological Chemistry, 290(5), 3106-3120. doi:10.1074/jbc.m114.593707Alonso, M., & Borja, M. (2005). High incidence of Pelargonium line pattern virus infecting asymptomatic Pelargonium spp. in Spain. European Journal of Plant Pathology, 112(2), 95-100. doi:10.1007/s10658-005-0803-1Ivars, P., Alonso, M., Borja, M., & Hernández, C. (2004). Development of a Non-radioactive Dot-blot Hybridisation Assay for the Detection of Pelargonium Flower Break Virus and Pelargonium line Pattern Virus. European Journal of Plant Pathology, 110(3), 275-283. doi:10.1023/b:ejpp.0000019798.87567.22Pérez-Cañamás, M., Blanco-Pérez, M., Forment, J., & Hernández, C. (2017). Nicotiana benthamiana plants asymptomatically infected by Pelargonium line pattern virus show unusually high accumulation of viral small RNAs that is neither associated with DCL induction nor RDR6 activity. Virology, 501, 136-146. doi:10.1016/j.virol.2016.11.018Tucker, S., Vitins, A., & Pikaard, C. S. (2010). Nucleolar dominance and ribosomal RNA gene silencing. Current Opinion in Cell Biology, 22(3), 351-356. doi:10.1016/j.ceb.2010.03.009Blanco-Pérez, M., & Hernández, C. (2016). Evidence supporting a premature termination mechanism for subgenomic RNA transcription in Pelargonium line pattern virus: identification of a critical long-range RNA–RNA interaction and functional variants through mutagenesis. Journal of General Virology, 97(6), 1469-1480. doi:10.1099/jgv.0.000459Pérez-Cañamás, M., & Hernández, C. (2018). New Insights into the Nucleolar Localization of a Plant RNA Virus-Encoded Protein That Acts in Both RNA Packaging and RNA Silencing Suppression: Involvement of Importins Alpha and Relevance for Viral Infection. Molecular Plant-Microbe Interactions®, 31(11), 1134-1144. doi:10.1094/mpmi-02-18-0050-rLi, L.-C., & Dahiya, R. (2002). MethPrimer: designing primers for methylation PCRs. Bioinformatics, 18(11), 1427-1431. doi:10.1093/bioinformatics/18.11.1427Hetzl, J., Foerster, A. M., Raidl, G., & Scheid, O. M. (2007). CyMATE: a new tool for methylation analysis of plant genomic DNA after bisulphite sequencing. The Plant Journal, 51(3), 526-536. doi:10.1111/j.1365-313x.2007.03152.xLiu, D., Shi, L., Han, C., Yu, J., Li, D., & Zhang, Y. (2012). Validation of Reference Genes for Gene Expression Studies in Virus-Infected Nicotiana benthamiana Using Quantitative Real-Time PCR. PLoS ONE, 7(9), e46451. doi:10.1371/journal.pone.0046451McStay, B., & Grummt, I. (2008). The Epigenetics of rRNA Genes: From Molecular to Chromosome Biology. Annual Review of Cell and Developmental Biology, 24(1), 131-157. doi:10.1146/annurev.cellbio.24.110707.175259Pikaard, C. S. (2000). The epigenetics of nucleolar dominance. Trends in Genetics, 16(11), 495-500. doi:10.1016/s0168-9525(00)02113-2Buchmann, R. C., Asad, S., Wolf, J. N., Mohannath, G., & Bisaro, D. M. (2009). Geminivirus AL2 and L2 Proteins Suppress Transcriptional Gene Silencing and Cause Genome-Wide Reductions in Cytosine Methylation. Journal of Virology, 83(10), 5005-5013. doi:10.1128/jvi.01771-08Rodríguez‐Negrete, E., Lozano‐Durán, R., Piedra‐Aguilera, A., Cruzado, L., Bejarano, E. R., & Castillo, A. G. (2013). Geminivirus R ep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene silencing. New Phytologist, 199(2), 464-475. doi:10.1111/nph.12286Yang, L., Xu, Y., Liu, Y., Meng, D., Jin, T., & Zhou, X. (2016). HC-Pro viral suppressor from tobacco vein banding mosaic virus interferes with DNA methylation and activates the salicylic acid pathway. Virology, 497, 244-250. doi:10.1016/j.virol.2016.07.024Alonso, C., Ramos‐Cruz, D., & Becker, C. (2018). The role of plant epigenetics in biotic interactions. New Phytologist, 221(2), 731-737. doi:10.1111/nph.15408Sáez-Vásquez, J., & Delseny, M. (2019). Ribosome Biogenesis in Plants: From Functional 45S Ribosomal DNA Organization to Ribosome Assembly Factors. The Plant Cell, 31(9), 1945-1967. doi:10.1105/tpc.18.00874Jan, E., Mohr, I., & Walsh, D. (2016). A Cap-to-Tail Guide to mRNA Translation Strategies in Virus-Infected Cells. Annual Review of Virology, 3(1), 283-307. doi:10.1146/annurev-virology-100114-055014Cao, M., Du, P., Wang, X., Yu, Y.-Q., Qiu, Y.-H., Li, W., … Ding, S.-W. (2014). Virus infection triggers widespread silencing of host genes by a distinct class of endogenous siRNAs inArabidopsis. Proceedings of the National Academy of Sciences, 111(40), 14613-14618. doi:10.1073/pnas.1407131111Martinez, G., Castellano, M., Tortosa, M., Pallas, V., & Gomez, G. (2013). A pathogenic non-coding RNA induces changes in dynamic DNA methylation of ribosomal RNA genes in host plants. Nucleic Acids Research, 42(3), 1553-1562. doi:10.1093/nar/gkt968Csorba, T., Kontra, L., & Burgyán, J. (2015). viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virology, 479-480, 85-103. doi:10.1016/j.virol.2015.02.028Deleris, A., Halter, T., & Navarro, L. (2016). DNA Methylation and Demethylation in Plant Immunity. Annual Review of Phytopathology, 54(1), 579-603. doi:10.1146/annurev-phyto-080615-100308Le, T.-N., Schumann, U., Smith, N. A., Tiwari, S., Au, P. C. K., Zhu, Q.-H., … Wang, M.-B. (2014). DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis. Genome Biology, 15(9). doi:10.1186/s13059-014-0458-3Yu, A., Lepere, G., Jay, F., Wang, J., Bapaume, L., Wang, Y., … Navarro, L. (2013). Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proceedings of the National Academy of Sciences, 110(6), 2389-2394. doi:10.1073/pnas.1211757110Palukaitis, P., & García-Arenal, F. (2003). Cucumoviruses. Advances in Virus Research, 241-323. doi:10.1016/s0065-3527(03)62005-1Ratcliff, F., Martin-Hernandez, A. M., & Baulcombe, D. C. (2008). Technical Advance: Tobacco rattle virus as a vector for analysis of gene function by silencing. The Plant Journal, 25(2), 237-245. doi:10.1046/j.0960-7412.2000.00942.
    corecore