3 research outputs found

    Exposure to ultrafine particles and respiratory hospitalisations in five European cities

    No full text
    Epidemiological evidence on the associations between exposure to ultrafine particles (UFP), with aerodynamic electrical mobility diameters <100 nm, and health is limited. We gathered data on UFP from five European cities within 2001-2011 to investigate associations between short-term changes in concentrations and respiratory hospitalisations. We applied city-specific Poisson regression models and combined city-specific estimates to obtain pooled estimates. We evaluated the sensitivity of our findings to co-pollutant adjustment and investigated effect modification patterns by period of the year, age at admission and specific diagnoses. Our results for the whole time period do not support an association between UFP and respiratory hospitalisations, although we found suggestive associations among those 0-14 years old. We nevertheless report consistent adverse effect estimates during the warm period of the year, statistically significant after lag 2 when an increase by 10000 particles per cm3 was associated with a 4.27% (95% CI 1.68-6.92%) increase in hospitalisations. These effect estimates were robust to particles' mass or gaseous pollutants adjustment. Considering that our findings during the warm period may reflect better exposure assessment and that the main source of non-soluble UFP in urban areas is traffic, our results call for improved regulation of traffic emissions.We thank the Consorci Sanitari de Barcelona (Cat-Salut) for providing hospitalisation data for Barcelona and the Agencia Estatal de Meteorologia (Ministerio de Agricultura, Alimentación y Medio Ambiente) for providing the weather data for Spain. We thank the Finnish Meteorological Institute for providing the weather data for Finland and Helsinki Region Environmental Services Authority HSY for providing the air pollution (other than UFP) data for Helsinki, Finland. The study has been conducted as a collaborative effort of the UF&HEALTH Study Group. UF&HEALTH Study Group: S. Breitner, J. Cyrys, R. Hampel, F. Hennig, B. Hoffmann, T. Kuhlbusch; S. Lanzinger, A. Peters, U. Quass, A. Schneider, K. Wolf (Germany); E. Diapouli, K. Elefteriadis, K. Katsouyanni, E. Samoli, S. Vratolis (Greece); T. Ellermann, Z. Ivanovic-Andersen, S. Loft, A. Massling, C. Nordstrøm (Denmark); P.P. Aalto, M. Kulmala, T. Lanki, J. Pekkanen, P. Tiittanen, T. Yli-Tuomi (Finland); G. Cattani, A. Faustini, F. Forastiere, M. Inglessis, M. Renzi, M. Stafoggia (Italy); D. Agis, X. Basagaña, B. Jacquemin, N. Perez, J. Sunyer, A. Tobias (Spain); G. Bero-Bedada, T. Bellander (Sweden).Peer reviewe

    Exposure to ultrafine particles and respiratory hospitalisations in five European cities

    No full text
    Epidemiological evidence on the associations between exposure to ultrafine particles (UFP), with aerodynamic electrical mobility diameters &lt;100 nm, and health is limited. We gathered data on UFP from five European cities within 2001-2011 to investigate associations between short-term changes in concentrations and respiratory hospitalisations.We applied city-specific Poisson regression models and combined city-specific estimates to obtain pooled estimates. We evaluated the sensitivity of our findings to co-pollutant adjustment and investigated effect modification patterns by period of the year, age at admission and specific diagnoses.Our results for the whole time period do not support an association between UFP and respiratory hospitalisations, although we found suggestive associations among those 0-14 years old. We nevertheless report consistent adverse effect estimates during the warm period of the year, statistically significant after lag 2 when an increase by 10 000 particles per cm(3) was associated with a 4.27% (95% CI 1.68-6.92%) increase in hospitalisations. These effect estimates were robust to particles&#39; mass or gaseous pollutants adjustment.Considering that our findings during the warm period may reflect better exposure assessment and that the main source of non-soluble UFP in urban areas is traffic, our results call for improved regulation of traffic emissions
    corecore