1 research outputs found

    Functionalization of carbon nanofibres obtained by floating catalyst method

    Get PDF
    The excellent physicochemical and electrical properties of carbon nanofibres (CNF) combined with the possibility of being produced at industrial scale at reasonable costs have promoted the interest in their use in very diverse areas. However, there are still some drawbacks that must be solved in order to optimize their set of properties such as the presence of impurities or the imperfections in the crystalline structure. In this work, different modification treatments of CNFs produced by the floating catalyst method have been studied. Three types of modification processes have been explored that can be grouped as mechanical, thermal, and chemical functionalization processes. Mechanical processing has allowed solving the agglomeration problem related to CNFs produced by floating catalyst method and the resulting modified product ensures the secure handling of carbon nanofibres. Thermal and chemical treatments lead to purer and more crystalline products by removing catalyst impurities and amorphous carbon. Functionalization processes explored in this work open the possibility of customized posttreatment of carbon nanofibres according to the desired requirements.Authors would like to thank Grupo Antolin Ingenieria for providing the starting carbon nanofibre. Authors would also like to thank The Ministry of Education of the Russian Federation for supporting this work by contract no. 14.577.21.0089, unique identifier of contract RFMEFI57714X0089.Fernandez, A.; Peretyagin, P.; Solis, W.; Torrecillas, R.; Borrell Tomás, MA. (2015). Functionalization of carbon nanofibres obtained by floating catalyst method. Journal of Nanomaterials. 2015. doi:10.1155/2015/395014S2015Basiuk, E. V., & Basiuk, V. A. (2014). Green Chemistry of Carbon Nanomaterials. Journal of Nanoscience and Nanotechnology, 14(1), 644-672. doi:10.1166/jnn.2014.9011Scida, K., Stege, P. W., Haby, G., Messina, G. A., & García, C. D. (2011). Recent applications of carbon-based nanomaterials in analytical chemistry: Critical review. Analytica Chimica Acta, 691(1-2), 6-17. doi:10.1016/j.aca.2011.02.025Dai, L., Chang, D. W., Baek, J.-B., & Lu, W. (2012). Carbon Nanomaterials for Advanced Energy Conversion and Storage. Small, 8(8), 1130-1166. doi:10.1002/smll.201101594Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56-58. doi:10.1038/354056a0Iijima, S., & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363(6430), 603-605. doi:10.1038/363603a0Bethune, D. S., Kiang, C. H., de Vries, M. S., Gorman, G., Savoy, R., Vazquez, J., & Beyers, R. (1993). Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363(6430), 605-607. doi:10.1038/363605a0Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849Martin-Gullon, I., Vera, J., Conesa, J. A., González, J. L., & Merino, C. (2006). Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor. Carbon, 44(8), 1572-1580. doi:10.1016/j.carbon.2005.12.027Tibbetts, G. G., Bernardo, C. A., Gorkiewicz, D. W., & Alig, R. L. (1994). Role of sulfur in the production of carbon fibers in the vapor phase. Carbon, 32(4), 569-576. doi:10.1016/0008-6223(94)90074-4Collins, S., Brydson, R., & Rand, B. (2002). Structural analysis of carbon nanofibres grown by the floating catalyst method. Carbon, 40(7), 1089-1100. doi:10.1016/s0008-6223(01)00251-2Ci, L., Li, Y., Wei, B., Liang, J., Xu, C., & Wu, D. (2000). Preparation of carbon nanofibers by the floating catalyst method. Carbon, 38(14), 1933-1937. doi:10.1016/s0008-6223(00)00030-0Ci, L., Zhu, H., Wei, B., Liang, J., Xu, C., & Wu, D. (1999). Phosphorus - a new element for promoting growth of carbon filaments by the floating catalyst method. Carbon, 37(10), 1652-1654. doi:10.1016/s0008-6223(99)00166-9Singh, C., Quested, T., Boothroyd, C. B., Thomas, P., Kinloch, I. A., Abou-Kandil, A. I., & Windle, A. H. (2002). Synthesis and Characterization of Carbon Nanofibers Produced by the Floating Catalyst Method. The Journal of Physical Chemistry B, 106(42), 10915-10922. doi:10.1021/jp026159aKim, Y. A., Matusita, T., Hayashi, T., Endo, M., & Dresselhaus, M. S. (2001). Topological changes of vapor grown carbon fibers during heat treatment. Carbon, 39(11), 1747-1752. doi:10.1016/s0008-6223(00)00307-9Lim, S., Yoon, S.-H., Mochida, I., & Chi, J. (2004). Surface Modification of Carbon Nanofiber with High Degree of Graphitization. The Journal of Physical Chemistry B, 108(5), 1533-1536. doi:10.1021/jp036819rChen, J., Shan, J. Y., Tsukada, T., Munekane, F., Kuno, A., Matsuo, M., … Endo, M. (2007). The structural evolution of thin multi-walled carbon nanotubes during isothermal annealing. Carbon, 45(2), 274-280. doi:10.1016/j.carbon.2006.09.028Endo, M., Kim, Y. A., Hayashi, T., Yanagisawa, T., Muramatsu, H., Ezaka, M., … Dresselhaus, M. S. (2003). Microstructural changes induced in «stacked cup» carbon nanofibers by heat treatment. Carbon, 41(10), 1941-1947. doi:10.1016/s0008-6223(03)00171-4Andrews, R., Jacques, D., Qian, D., & Dickey, E. C. (2001). Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures. Carbon, 39(11), 1681-1687. doi:10.1016/s0008-6223(00)00301-8Cuesta, A., Dhamelincourt, P., Laureyns, J., Martínez-Alonso, A., & Tascón, J. M. D. (1994). Raman microprobe studies on carbon materials. Carbon, 32(8), 1523-1532. doi:10.1016/0008-6223(94)90148-1Seuk Youn, H. (2002). Purity enhancement and electrochemical hydrogen storage property of carbon nanofibers grown at low temperature. International Journal of Hydrogen Energy, 27(9), 937-940. doi:10.1016/s0360-3199(01)00194-xLakshminarayanan, P. V., Toghiani, H., & Pittman, C. U. (2004). Nitric acid oxidation of vapor grown carbon nanofibers. Carbon, 42(12-13), 2433-2442. doi:10.1016/j.carbon.2004.04.04
    corecore