3 research outputs found

    Near-Infrared Polarimetric Adaptive Optics Observations of NGC 1068: A torus created by a hydromagnetic outflow wind

    Full text link
    We present J' and K' imaging linear polarimetric adaptive optics observations of NGC 1068 using MMT-Pol on the 6.5-m MMT. These observations allow us to study the torus from a magnetohydrodynamical (MHD) framework. In a 0.5" (30 pc) aperture at K', we find that polarisation arising from the passage of radiation from the inner edge of the torus through magnetically aligned dust grains in the clumps is the dominant polarisation mechanism, with an intrinsic polarisation of 7.0%±\pm2.2%. This result yields a torus magnetic field strength in the range of 4−-82 mG through paramagnetic alignment, and 139−20+11^{+11}_{-20} mG through the Chandrasekhar-Fermi method. The measured position angle (P.A.) of polarisation at K′' is found to be similar to the P.A. of the obscuring dusty component at few parsec scales using infrared interferometric techniques. We show that the constant component of the magnetic field is responsible for the alignment of the dust grains, and aligned with the torus axis onto the plane of the sky. Adopting this magnetic field configuration and the physical conditions of the clumps in the MHD outflow wind model, we estimate a mass outflow rate ≤\le0.17 M⊙_{\odot} yr−1^{-1} at 0.4 pc from the central engine for those clumps showing near-infrared dichroism. The models used were able to create the torus in a timescale of ≥\geq105^{5} yr with a rotational velocity of ≤\leq1228 km s−1^{-1} at 0.4 pc. We conclude that the evolution, morphology and kinematics of the torus in NGC 1068 can be explained within a MHD framework.Comment: 14 pages, 4 figures, Accepted by MNRA

    Near-infrared polarimetric adaptive optics observations of NGC 1068: A torus created by a hydromagnetic outflow wind

    Get PDF
    et al.We present J′ and K′ imaging linear polarimetric adaptive optics observations of NGC 1068 using MMT-Pol on the 6.5-m MMT. These observations allow us to study the torus from a magnetohydrodynamical (MHD) framework. In a 0.5 arcsec (30 pc) aperture at K′, we find that polarization arising from the passage of radiation from the inner edge of the torus through magnetically aligned dust grains in the clumps is the dominant polarization mechanism, with an intrinsic polarization of 7.0 ± 2.2 per cent. This result yields a torus magnetic field strength in the range of 4–82 mG through paramagnetic alignment, and 139+11−20−20+11 mG through the Chandrasekhar–Fermi method. The measured position angle (P.A.) of polarization at K′ is found to be similar to the P.A. of the obscuring dusty component at few parsec scales using infrared interferometric techniques. We show that the constant component of the magnetic field is responsible for the alignment of the dust grains, and aligned with the torus axis on to the plane of the sky. Adopting this magnetic field configuration and the physical conditions of the clumps in the MHD outflow wind model, we estimate a mass outflow rate ≤0.17 M⊙ yr−1 at 0.4 pc from the central engine for those clumps showing near-infrared dichroism. The models used were able to create the torus in a time-scale of ≥105 yr with a rotational velocity of ≤1228 km s−1 at 0.4 pc. We conclude that the evolution, morphology and kinematics of the torus in NGC 1068 can be explained within a MHD framework.ELR and CP acknowledge support from the University of Texas at San Antonio. CP acknowledges support from NSF-0904421 grant. CP and TJJ acknowledge support from NSF-0704095 grant. AA-H acknowledges financial support from the Spanish Plan Nacional de Astronomía y Astrofisíca under grant AYA2012-31447. RN acknowledges support by FONDECYT grant No. 3140436. CRA is supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme (PIEF-GA-2012-327934).Peer Reviewe
    corecore