1 research outputs found

    Continuous catalytic process for the selective dehydration of glycerol over Cu-based mixed oxide

    Full text link
    [EN] The selective dehydration of glycerol to hydroxyacetone (acetol) was studied with Cu-based mixed oxides derived from hydrotalcite as catalysts in a continuous flow fix-bed reactor. Catalysts were prepared by co-precipitation and characterized by ICP, N-2 adsorption, XRD, NH3-TPD, CO2-TPD, TPR and TEM. Different parameters were investigated to develop the most appropriate material as well as to determine the function of every metallic species. The optimized Cu-Mg-AlOx offered approximate to 60% acetol selectivity at >90% glycerol conversion (approximate to 80% liquid yield, up to TOS = 9 h). The catalyst could be regenerated by calcination, achieving full activity recovery after five re-cycles. "In-situ" FTIR and XPS measurements evidenced that the presence of Cu, specially the most active Cu1+ species, was essential to carry out the dehydration to acetol with high reaction rates, and to form the preferred intermediate (with C=O group); although a minor contribution from Cu-0 and Cu2+ species could not be discarded.Financial support by Spanish Government (CTQ-2015-67592, PGC2018-097277-B-100 and SEV-2016-0683) and PhosAgro/UNESCO/IUPAC Partnership (Proj. 139) is gratefully acknowledged. J.M. also thanks Spanish Government (CTQ-2015-67592) for his FPI fellowship.MazarĂ­o-Santa-Pau, J.; ConcepciĂłn Heydorn, P.; Ventura, M.; Domine, ME. (2020). Continuous catalytic process for the selective dehydration of glycerol over Cu-based mixed oxide. Journal of Catalysis. 385:160-175. https://doi.org/10.1016/j.jcat.2020.03.010S160175385BP Statistical Review of World Energy, #BPstats. 40 (2015). bp.com/statisticalreview.Stöcker, M. (2008). Biofuels and Biomass‐To‐Liquid Fuels in the Biorefinery: Catalytic Conversion of Lignocellulosic Biomass using Porous Materials. Angewandte Chemie International Edition, 47(48), 9200-9211. doi:10.1002/anie.200801476Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360dHuber, G. W., & Corma, A. (2007). Synergies between Bio- and Oil Refineries for the Production of Fuels from Biomass. Angewandte Chemie International Edition, 46(38), 7184-7201. doi:10.1002/anie.200604504Chheda, J. N., Huber, G. W., & Dumesic, J. A. (2007). Liquid-Phase Catalytic Processing of Biomass-Derived Oxygenated Hydrocarbons to Fuels and Chemicals. Angewandte Chemie International Edition, 46(38), 7164-7183. doi:10.1002/anie.200604274Demirbas, A. (2009). Biofuels securing the planet’s future energy needs. Energy Conversion and Management, 50(9), 2239-2249. doi:10.1016/j.enconman.2009.05.010Moreira, A. L., Dias, J. M., Almeida, M. F., & Alvim-Ferraz, M. C. M. (2010). Biodiesel Production through Transesterification of Poultry Fat at 30 °C. Energy & Fuels, 24(10), 5717-5721. doi:10.1021/ef100705sCosta, J. F., Almeida, M. F., Alvim-Ferraz, M. C. M., & Dias, J. M. (2013). Biodiesel production using oil from fish canning industry wastes. Energy Conversion and Management, 74, 17-23. doi:10.1016/j.enconman.2013.04.032Dias, J. M., Alvim-Ferraz, M. C. M., & Almeida, M. F. (2009). Production of biodiesel from acid waste lard. Bioresource Technology, 100(24), 6355-6361. doi:10.1016/j.biortech.2009.07.025S.C. D’Angelo, A. Dall’Ara, C. Mondelli, J. PĂ©rez-RamĂ­rez, S. Papadokonstantakis, ACS Sust. Chem. Eng. 6 (2018) 16563–16572.Lari, G. M., Pastore, G., Haus, M., Ding, Y., Papadokonstantakis, S., Mondelli, C., & PĂ©rez-RamĂ­rez, J. (2018). Environmental and economical perspectives of a glycerol biorefinery. Energy & Environmental Science, 11(5), 1012-1029. doi:10.1039/c7ee03116eJohnson, D. T., & Taconi, K. A. (2007). The glycerin glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production. Environmental Progress, 26(4), 338-348. doi:10.1002/ep.10225Zhou, C.-H. (Clayton), Beltramini, J. N., Fan, Y.-X., & Lu, G. Q. (Max). (2008). Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem. Soc. Rev., 37(3), 527-549. doi:10.1039/b707343gCliment, M. J., Corma, A., De Frutos, P., Iborra, S., Noy, M., Velty, A., & ConcepciĂłn, P. (2010). Chemicals from biomass: Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid–base pairs. Journal of Catalysis, 269(1), 140-149. doi:10.1016/j.jcat.2009.11.001Vieville, C., Yoo, J. W., Pelet, S., & Mouloungui, Z. (1998). Catalysis Letters, 56(4), 245-247. doi:10.1023/a:1019050205502Soares, R. R., Simonetti, D. A., & Dumesic, J. A. (2006). Glycerol as a Source for Fuels and Chemicals by Low-Temperature Catalytic Processing. Angewandte Chemie, 118(24), 4086-4089. doi:10.1002/ange.200600212Rahmat, N., Abdullah, A. Z., & Mohamed, A. R. (2010). Recent progress on innovative and potential technologies for glycerol transformation into fuel additives: A critical review. Renewable and Sustainable Energy Reviews, 14(3), 987-1000. doi:10.1016/j.rser.2009.11.010List, B. (2000). The Direct Catalytic Asymmetric Three-Component Mannich Reaction. Journal of the American Chemical Society, 122(38), 9336-9337. doi:10.1021/ja001923xNotz, W., & List, B. (2000). Catalytic Asymmetric Synthesis of anti-1,2-Diols. Journal of the American Chemical Society, 122(30), 7386-7387. doi:10.1021/ja001460vDasari, M. A., Kiatsimkul, P.-P., Sutterlin, W. R., & Suppes, G. J. (2005). Low-pressure hydrogenolysis of glycerol to propylene glycol. Applied Catalysis A: General, 281(1-2), 225-231. doi:10.1016/j.apcata.2004.11.033Chiu, C.-W., Dasari, M. A., Suppes, G. J., & Sutterlin, W. R. (2006). Dehydration of glycerol to acetol via catalytic reactive distillation. AIChE Journal, 52(10), 3543-3548. doi:10.1002/aic.10951Sato, S., Akiyama, M., Takahashi, R., Hara, T., Inui, K., & Yokota, M. (2008). Vapor-phase reaction of polyols over copper catalysts. Applied Catalysis A: General, 347(2), 186-191. doi:10.1016/j.apcata.2008.06.013Velasquez, M., Santamaria, A., & Batiot-Dupeyrat, C. (2014). Selective conversion of glycerol to hydroxyacetone in gas phase over La2CuO4 catalyst. Applied Catalysis B: Environmental, 160-161, 606-613. doi:10.1016/j.apcatb.2014.06.006Talebian-Kiakalaieh, A., Amin, N. A. S., & Hezaveh, H. (2014). Glycerol for renewable acrolein production by catalytic dehydration. Renewable and Sustainable Energy Reviews, 40, 28-59. doi:10.1016/j.rser.2014.07.168Pagliaro, M., Ciriminna, R., & Palmisano, G. (2008). Flexible Solar Cells. ChemSusChem, 1(11), 880-891. doi:10.1002/cssc.200800127Kinage, A. K., Upare, P. P., Kasinathan, P., Hwang, Y. K., & Chang, J.-S. (2010). Selective conversion of glycerol to acetol over sodium-doped metal oxide catalysts. Catalysis Communications, 11(7), 620-623. doi:10.1016/j.catcom.2010.01.008Carvalho, D. C., Pinheiro, L. G., Campos, A., Millet, E. R. C., de Sousa, F. F., Filho, J. M., 
 Oliveira, A. C. (2014). Characterization and catalytic performances of copper and cobalt-exchanged hydroxyapatite in glycerol conversion for 1-hydroxyacetone production. Applied Catalysis A: General, 471, 39-49. doi:10.1016/j.apcata.2013.11.014Reichle, W. (1986). Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite). Solid State Ionics, 22(1), 135-141. doi:10.1016/0167-2738(86)90067-6Tichit, D., & Coq, B. (2003). Catalysis by Hydrotalcites and Related Materials. CATTECH, 7(6), 206-217. doi:10.1023/b:catt.0000007166.65577.34Cavani, F., TrifirĂČ, F., & Vaccari, A. (1991). Hydrotalcite-type anionic clays: Preparation, properties and applications. Catalysis Today, 11(2), 173-301. doi:10.1016/0920-5861(91)80068-kDi Cosimo, J. I., Dı́ez, V. K., Xu, M., Iglesia, E., & Apesteguı́a, C. R. (1998). Structure and Surface and Catalytic Properties of Mg-Al Basic Oxides. Journal of Catalysis, 178(2), 499-510. doi:10.1006/jcat.1998.2161Sels, B. F., De Vos, D. E., & Jacobs, P. A. (2001). Hydrotalcite-like anionic clays in catalytic organic reactions. Catalysis Reviews, 43(4), 443-488. doi:10.1081/cr-120001809Manfro, R. L., Pires, T. P. M. D., Ribeiro, N. F. P., & Souza, M. M. V. M. (2013). Aqueous-phase reforming of glycerol using Ni–Cu catalysts prepared from hydrotalcite-like precursors. Catalysis Science & Technology, 3(5), 1278. doi:10.1039/c3cy20770fAraque, M., MartĂ­nez T, L. M., Vargas, J. C., Centeno, M. A., & Roger, A. C. (2012). Effect of the active metals on the selective H2 production in glycerol steam reforming. Applied Catalysis B: Environmental, 125, 556-566. doi:10.1016/j.apcatb.2012.06.028Bienholz, A., Hofmann, H., & Claus, P. (2011). Selective hydrogenolysis of glycerol over copper catalysts both in liquid and vapour phase: Correlation between the copper surface area and the catalyst’s activity. Applied Catalysis A: General, 391(1-2), 153-157. doi:10.1016/j.apcata.2010.08.047Mane, R. B., & Rode, C. V. (2012). Simultaneous glycerol dehydration and in situ hydrogenolysis over Cu–Al oxide under an inert atmosphere. Green Chemistry, 14(10), 2780. doi:10.1039/c2gc35661aBlanch-Raga, N., Palomares, A. E., MartĂ­nez-Triguero, J., Fetter, G., & Bosch, P. (2013). Cu Mixed Oxides Based on Hydrotalcite-Like Compounds for the Oxidation of Trichloroethylene. Industrial & Engineering Chemistry Research, 52(45), 15772-15779. doi:10.1021/ie4024935Shen, J., Tu, M., & Hu, C. (1998). Structural and Surface Acid/Base Properties of Hydrotalcite-Derived MgAlO Oxides Calcined at Varying Temperatures. Journal of Solid State Chemistry, 137(2), 295-301. doi:10.1006/jssc.1997.7739Yuan, D., Li, X., Zhao, Q., Zhao, J., Liu, S., & TadĂ©, M. (2013). Effect of surface Lewis acidity on selective catalytic reduction of NO by C3H6 over calcined hydrotalcite. Applied Catalysis A: General, 451, 176-183. doi:10.1016/j.apcata.2012.11.001Trombetta, M., Ramis, G., Busca, G., Montanari, B., & Vaccari, A. (1997). Ammonia Adsorption and Oxidation on Cu/Mg/Al Mixed Oxide Catalysts Prepared via Hydrotalcite-Type Precursors. Langmuir, 13(17), 4628-4637. doi:10.1021/la960673oRomero, M. D., Calles, J. A., Ocaña, M. A., & GĂłmez, J. M. (2008). Epoxidation of cyclohexene over basic mixed oxides derived from hydrotalcite materials: Activating agent, solvent and catalyst reutilization. Microporous and Mesoporous Materials, 111(1-3), 243-253. doi:10.1016/j.micromeso.2007.07.041Popescu, I., Tanchoux, N., Tichit, D., & Marcu, I.-C. (2017). Total oxidation of methane over supported CuO: Influence of the Mg x Al y O support. Applied Catalysis A: General, 538, 81-90. doi:10.1016/j.apcata.2017.03.012Lauriol-Garbay, P., Millet, J. M. M., Loridant, S., BelliĂšre-Baca, V., & Rey, P. (2011). New efficient and long-life catalyst for gas-phase glycerol dehydration to acrolein. Journal of Catalysis, 280(1), 68-76. doi:10.1016/j.jcat.2011.03.005MĂ©szĂĄros, S., HalĂĄsz, J., KĂłnya, Z., Sipos, P., & PĂĄlinkĂł, I. (2013). Reconstruction of calcined MgAl- and NiMgAl-layered double hydroxides during glycerol dehydration and their recycling characteristics. Applied Clay Science, 80-81, 245-248. doi:10.1016/j.clay.2013.04.010Guo, X., Li, Y., Song, W., & Shen, W. (2011). Glycerol Hydrogenolysis over Co Catalysts Derived from a Layered Double Hydroxide Precursor. Catalysis Letters, 141(10), 1458-1463. doi:10.1007/s10562-011-0642-yV.A. Naumkin, A. Kraut-Vass, S.W. Gaarenstroom, C.J. Powell, NIST standard reference database 20, version 4.1. https://srdata.nist.gov/xps/WagnerPlot.aspx.Gruenert, W., Hayes, N. W., Joyner, R. W., Shpiro, E. S., Siddiqui, M. R. H., & Baeva, G. N. (1994). Structure, Chemistry, and Activity of Cu-ZSM-5 Catalysts for the Selective Reduction of NOx in the Presence of Oxygen. The Journal of Physical Chemistry, 98(42), 10832-10846. doi:10.1021/j100093a026Keil, P., Lützenkirchen-Hecht, D., & Frahm, R. (2007). Investigation of Room Temperature Oxidation of Cu in Air by Yoneda-XAFS. AIP Conference Proceedings. doi:10.1063/1.2644569Chmielarz, L., Kuƛtrowski, P., Rafalska-Ɓasocha, A., & Dziembaj, R. (2002). Influence of Cu, Co and Ni cations incorporated in brucite-type layers on thermal behaviour of hydrotalcites and reducibility of the derived mixed oxide systems. Thermochimica Acta, 395(1-2), 225-236. doi:10.1016/s0040-6031(02)00214-9KANNAN, S., DUBEY, A., & KNOZINGER, H. (2005). Synthesis and characterization of CuMgAl ternary hydrotalcites as catalysts for the hydroxylation of phenol. Journal of Catalysis, 231(2), 381-392. doi:10.1016/j.jcat.2005.01.032Fierro, G., Lojacono, M., Inversi, M., Porta, P., Lavecchia, R., & Cioci, F. (1994). A Study of Anomalous Temperature-Programmed Reduction Profiles of Cu2O, CuO, and CuO-ZnO Catalysts. Journal of Catalysis, 148(2), 709-721. doi:10.1006/jcat.1994.1257Alejandre, A., Medina, F., Salagre, P., Correig, X., & Sueiras, J. E. (1999). Preparation and Study of Cu−Al Mixed Oxides via Hydrotalcite-like Precursors. Chemistry of Materials, 11(4), 939-948. doi:10.1021/cm980500fCĂ©lerier, S., Morisset, S., Batonneau-Gener, I., Belin, T., Younes, K., & Batiot-Dupeyrat, C. (2018). Glycerol dehydration to hydroxyacetone in gas phase over copper supported on magnesium oxide (hydroxide) fluoride catalysts. Applied Catalysis A: General, 557, 135-144. doi:10.1016/j.apcata.2018.03.022Miyata, S. (1980). Physico-Chemical Properties of Synthetic Hydrotalcites in Relation to Composition. Clays and Clay Minerals, 28(1), 50-56. doi:10.1346/ccmn.1980.028010
    corecore