3 research outputs found

    Ultrafine and nanoparticle formation and emission mechanisms during laser processing of ceramic materials

    Get PDF
    The use of laser technology in the ceramic industry is undergoing an increasing trend, as it improves surface properties. The present work aimed to assess ultrafine and nanoparticle emissions from two different types of laser treatments (tile sintering and ablation) applied to two types of tiles. New particle formation mechanisms were identified, as well as primary nanoparticle emissions, with concentrations reaching up to 6.7 x 10(6) particles Cm-3 and a mean diameter of 18 nm. Nanoparticle emission patterns were strongly dependent on temperature and raw tile chemical composition. Nucleation events were detected during the thermal treatment independently of the laser application. TOM images evidenced spherical ultrafine particles, originating from the tile melting processes. When transported across the indoor environment, particles increased in size (up to 38 nm) with concentrations remaining high (2.3 x 10(6) particles cm(-3)), Concentrations of metals such as Zn, Pb, Cu, Cr, As and al were found in particles < 250 nm

    Ultrafine and nanoparticle formation and emission mechanisms during laser processing of ceramic materials

    Get PDF
    The use of laser technology in the ceramic industry is undergoing an increasing trend, as it improves surface properties. The present work aimed to assess ultrafine and nanoparticle emissions from two different types of laser treatments (tile sintering and ablation) applied to two types of tiles. New particle formation mechanisms were identified, as well as primary nanoparticle emissions, with concentrations reaching up to 6.7×106particlescm-3 and a mean diameter of 18nm. Nanoparticle emission patterns were strongly dependent on temperature and raw tile chemical composition. Nucleation events were detected during the thermal treatment independently of the laser application. TEM images evidenced spherical ultrafine particles, originating from the tile melting processes. When transported across the indoor environment, particles increased in size (up to 38nm) with concentrations remaining high (2.3×106particlescm-3). Concentrations of metals such as Zn, Pb, Cu, Cr, As and TI were found in particles <250nm.This study was supported by the European Community׳s Seventh Framework Program (FP7-PEOPLE-2012-ITN) under Grant no. 315760 (HEXACOMM Project) and by the National Project IMPACT (CGL2011-26574). Additional funding was provided by LIFE projects AIRUSE (LIFE11 ENV/ES/584), CERAMGLASS (LIFE11 ENV/ES/560) and LASERFIRING (LIFE09 ENV/ES/435).Peer Reviewe
    corecore