1 research outputs found

    Evaluation of the silver species nature in Ag-ITQ2 zeolites by the CO oxidation reaction

    Full text link
    The authors thank the Spanish Ministry of Economy and Competitiveness through RTI2018-101784-B-I00 (MINECO/FEDER) and SEV-2016-0683 projects for the financial support. We gratefully acknowledge ALBA synchrotron for allocating beamtime (proposal 2015091414) and the CLAESS beamline staff for their help and technical support during our experiment. CG and NB thank the TUW Innovative Project GIP165CDGC. CG, SP, VT, NB and GR are thankful for financial support from the Austrian Science Fund (FWF) through projects DK+ Solids4Fun (W1243) and ComCat (I 1041-N28). I. Lopez Hernandez is grateful to Generalitat Valenciana and European Social Fund for the pre doctoral grant ACIF2017.López-Hernández, I.; García Yago, CI.; Truttmann, V.; Pollit, S.; Barrabés, N.; Rupprechter, G.; Rey Garcia, F.... (2020). Evaluation of the silver species nature in Ag-ITQ2 zeolites by the CO oxidation reaction. Catalysis Today. 345:22-26. https://doi.org/10.1016/j.cattod.2019.12.001S2226345Serhan, N., Tsolakis, A., Wahbi, A., Martos, F. J., & Golunski, S. (2019). Modifying catalytically the soot morphology and nanostructure in diesel exhaust: Influence of silver De-NOx catalyst (Ag/Al2O3). Applied Catalysis B: Environmental, 241, 471-482. doi:10.1016/j.apcatb.2018.09.068Góra-Marek, K., Tarach, K. A., Piwowarska, Z., Łaniecki, M., & Chmielarz, L. (2016). Ag-loaded zeolites Y and USY as catalysts for selective ammonia oxidation. Catalysis Science & Technology, 6(6), 1651-1660. doi:10.1039/c5cy01446hHu, X., Bai, J., Hong, H., & Li, C. (2016). Supercritical carbon dioxide anchored highly dispersed silver nanoparticles on 4A-zeolite and selective oxidation of styrene performance. CrystEngComm, 18(14), 2469-2476. doi:10.1039/c5ce02435hCerrillo, J. L., Palomares, A. E., Rey, F., Valencia, S., Pérez-Gago, M. B., Villamón, D., & Palou, L. (2018). Functional Ag-Exchanged Zeolites as Biocide Agents. ChemistrySelect, 3(17), 4676-4682. doi:10.1002/slct.201800432Dong, X.-Y., Gao, Z.-W., Yang, K.-F., Zhang, W.-Q., & Xu, L.-W. (2015). Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals. Catalysis Science & Technology, 5(5), 2554-2574. doi:10.1039/c5cy00285kSulaiman, K. O., Sudheeshkumar, V., & Scott, R. W. J. (2019). Activation of atomically precise silver clusters on carbon supports for styrene oxidation reactions. RSC Advances, 9(48), 28019-28027. doi:10.1039/c9ra05566eCoutiño-Gonzalez, E., Baekelant, W., Steele, J. A., Kim, C. W., Roeffaers, M. B. J., & Hofkens, J. (2017). Silver Clusters in Zeolites: From Self-Assembly to Ground-Breaking Luminescent Properties. Accounts of Chemical Research, 50(9), 2353-2361. doi:10.1021/acs.accounts.7b00295Liu, L., & Corma, A. (2018). Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chemical Reviews, 118(10), 4981-5079. doi:10.1021/acs.chemrev.7b00776Zhao, J., & Jin, R. (2018). Heterogeneous catalysis by gold and gold-based bimetal nanoclusters. Nano Today, 18, 86-102. doi:10.1016/j.nantod.2017.12.009Zhang, B., Kaziz, S., Li, H., Hevia, M. G., Wodka, D., Mazet, C., … Barrabés, N. (2015). Modulation of Active Sites in Supported Au38(SC2H4Ph)24 Cluster Catalysts: Effect of Atmosphere and Support Material. The Journal of Physical Chemistry C, 119(20), 11193-11199. doi:10.1021/jp512022vZhang, B., Sels, A., Salassa, G., Pollitt, S., Truttmann, V., Rameshan, C., … Barrabés, N. (2018). Ligand Migration from Cluster to Support: A Crucial Factor for Catalysis by Thiolate‐protected Gold Clusters. ChemCatChem, 10(23), 5372-5376. doi:10.1002/cctc.201801474Natarajan, G., Mathew, A., Negishi, Y., Whetten, R. L., & Pradeep, T. (2015). A Unified Framework for Understanding the Structure and Modifications of Atomically Precise Monolayer Protected Gold Clusters. The Journal of Physical Chemistry C, 119(49), 27768-27785. doi:10.1021/acs.jpcc.5b08193Tsukuda, T., & Häkkinen, H. (2015). Introduction. Protected Metal Clusters - From Fundamentals to Applications, 1-7. doi:10.1016/b978-0-08-100086-1.00001-4Zhang, X., Qu, Z., Li, X., Wen, M., Quan, X., Ma, D., & Wu, J. (2010). Studies of silver species for low-temperature CO oxidation on Ag/SiO2 catalysts. Separation and Purification Technology, 72(3), 395-400. doi:10.1016/j.seppur.2010.03.012Kolobova, E., Pestryakov, A., Mamontov, G., Kotolevich, Y., Bogdanchikova, N., Farias, M., … Cortes Corberan, V. (2017). Low-temperature CO oxidation on Ag/ZSM-5 catalysts: Influence of Si/Al ratio and redox pretreatments on formation of silver active sites. Fuel, 188, 121-131. doi:10.1016/j.fuel.2016.10.037Ausavasukhi, A., Suwannaran, S., Limtrakul, J., & Sooknoi, T. (2008). Reversible interconversion behavior of Ag species in AgHZSM-5: XRD, 1H MAS NMR, TPR, TPHE, and catalytic studies. Applied Catalysis A: General, 345(1), 89-96. doi:10.1016/j.apcata.2008.04.026Shi, C., Cheng, M., Qu, Z., & Bao, X. (2005). On the correlation between microstructural changes of Ag-H-ZSM-5 catalysts and their catalytic performances in the selective catalytic reduction of NOx by methane. Journal of Molecular Catalysis A: Chemical, 235(1-2), 35-43. doi:10.1016/j.molcata.2004.10.045Afanasev, D. S., Yakovina, O. A., Kuznetsova, N. I., & Lisitsyn, A. S. (2012). High activity in CO oxidation of Ag nanoparticles supported on fumed silica. Catalysis Communications, 22, 43-47. doi:10.1016/j.catcom.2012.02.014Kolobova, E., Pestryakov, A., Shemeryankina, A., Kotolevich, Y., Martynyuk, O., Tiznado Vazquez, H. J., & Bogdanchikova, N. (2014). Formation of silver active states in Ag/ZSM-5 catalysts for CO oxidation. Fuel, 138, 65-71. doi:10.1016/j.fuel.2014.07.011Royer, S., & Duprez, D. (2010). Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides. ChemCatChem, 3(1), 24-65. doi:10.1002/cctc.201000378Soliman, N. K. (2019). Factors affecting CO oxidation reaction over nanosized materials: A review. Journal of Materials Research and Technology, 8(2), 2395-2407. doi:10.1016/j.jmrt.2018.12.012Du, M., Sun, D., Yang, H., Huang, J., Jing, X., Odoom-Wubah, T., … Li, Q. (2014). Influence of Au Particle Size on Au/TiO2 Catalysts for CO Oxidation. The Journal of Physical Chemistry C, 118(33), 19150-19157. doi:10.1021/jp504681fCorma, A., Fornés, V., Guil, J. ., Pergher, S., Maesen, T. L. ., & Buglass, J. . (2000). Preparation, characterisation and catalytic activity of ITQ-2, a delaminated zeolite. Microporous and Mesoporous Materials, 38(2-3), 301-309. doi:10.1016/s1387-1811(00)00149-9Joshi, C. P., Bootharaju, M. S., Alhilaly, M. J., & Bakr, O. M. (2015). [Ag25(SR)18]−: The «Golden» Silver Nanoparticle. Journal of the American Chemical Society, 137(36), 11578-11581. doi:10.1021/jacs.5b07088Aspromonte, S. G., Mizrahi, M. D., Schneeberger, F. A., López, J. M. R., & Boix, A. V. (2013). Study of the Nature and Location of Silver in Ag-Exchanged Mordenite Catalysts. Characterization by Spectroscopic Techniques. The Journal of Physical Chemistry C, 117(48), 25433-25442. doi:10.1021/jp4046269Veronesi, G., Deniaud, A., Gallon, T., Jouneau, P.-H., Villanova, J., Delangle, P., … Michaud-Soret, I. (2016). Visualization, quantification and coordination of Ag+ions released from silver nanoparticles in hepatocytes. Nanoscale, 8(38), 17012-17021. doi:10.1039/c6nr04381jVeronesi, G., Aude-Garcia, C., Kieffer, I., Gallon, T., Delangle, P., Herlin-Boime, N., … Carrière, M. (2015). Exposure-dependent Ag+release from silver nanoparticles and its complexation in AgS2sites in primary murine macrophages. Nanoscale, 7(16), 7323-7330. doi:10.1039/c5nr00353aHudson-Smith, N. V., Clement, P. L., Brown, R. P., Krause, M. O. P., Pedersen, J. A., & Haynes, C. L. (2016). Research highlights: speciation and transformations of silver released from Ag NPs in three species. Environmental Science: Nano, 3(6), 1236-1240. doi:10.1039/c6en90025aShimizu, K., Sugino, K., Kato, K., Yokota, S., Okumura, K., & Satsuma, A. (2007). Formation and Redispersion of Silver Clusters in Ag-MFI Zeolite as Investigated by Time-Resolved QXAFS and UV−Vis. The Journal of Physical Chemistry C, 111(4), 1683-1688. doi:10.1021/jp066995aChen, D., Qu, Z., Shen, S., Li, X., Shi, Y., Wang, Y., … Wu, J. (2011). Comparative studies of silver based catalysts supported on different supports for the oxidation of formaldehyde. Catalysis Today, 175(1), 338-345. doi:10.1016/j.cattod.2011.03.059Schuricht, F., & Reschetilowski, W. (2012). Simultaneous selective catalytic reduction (SCR) of NOx and N2O over Ag/ZSM-5 – Catalytic studies and mechanistic implications. Microporous and Mesoporous Materials, 164, 135-144. doi:10.1016/j.micromeso.2012.07.018Akolekar, D. B., & Bhargava, S. K. (2000). Adsorption of NO and CO on silver-exchanged microporous materials. Journal of Molecular Catalysis A: Chemical, 157(1-2), 199-206. doi:10.1016/s1381-1169(00)00055-8Liu, J., Krishna, K. S., Kumara, C., Chattopadhyay, S., Shibata, T., Dass, A., & Kumar, C. S. S. R. (2016). Understanding Au∼98Ag∼46(SR)60 nanoclusters through investigation of their electronic and local structure by X-ray absorption fine structure. RSC Advances, 6(30), 25368-25374. doi:10.1039/c5ra27396jChevrier, D. M., Yang, R., Chatt, A., & Zhang, P. (2015). Bonding properties of thiolate-protected gold nanoclusters and structural analogs from X-ray absorption spectroscopy. Nanotechnology Reviews, 4(2). doi:10.1515/ntrev-2015-0007Yamazoe, S., & Tsukuda, T. (2019). X-ray Absorption Spectroscopy on Atomically Precise Metal Clusters. Bulletin of the Chemical Society of Japan, 92(1), 193-204. doi:10.1246/bcsj.2018028
    corecore