1 research outputs found

    Optimizing Reflux Synthesis Method of Mo-V-Te-Nb mixed oxide Catalysts for Light Alkane Selective Oxidation

    Full text link
    [EN] The investigation here presented studies the effect of the synthesis temperature (from 80 to 110 degrees C) and the time (from 1 to 4 days) employed to precipitate catalyst precursors by reflux method, on the physic-chemical and the catalytic properties of the resulting Mo-V-Te-Nb mixed oxide catalysts for both propane partial oxidation into acrylic acid and ethane oxidative dehydrogenation (ODH) to ethylene. The insight obtained has allowed an important optimization of the not commonly used reflux method to prepare Mo-V-Te-Nb oxide materials with competitive catalytic performance. The yields achieved overcome those from optimized catalysts prepared by conventional hydrothermal method, and approach those reached with catalysts prepared using the "slurry method". The optimum rise for the synthesis temperature is found as a key factor for the reflux method. It allows access to an increased vanadium content into the reflux precipitate, which favors the formation of a pseudo-amorphous Mo-V-Te-Nb oxometallate. This precipitate behaves as a precursor for the crystallization, during the solid-state activation step at high-temperature (600 degrees C/N-2), of the structure type (TeO)(2)M20O56 (M = Mo, V, Nb), key for the selective conversion of propane or ethane. On the other hand, for the optimum temperature of synthesis, i.e. 110 degrees C, higher synthesis time of the precursor leads to smaller crystal sizes in the final catalyst (higher specific surface areas) and lowers the average oxidation state of vanadium from V+5 to V+4, which significantly enhances the catalytic behavior.Authors gratefully acknowledge the funds from DGICYT (Spain) by the project RTI2018-099668-B-C21, as well as the funds from Comunidad de Madrid by the project 2017-T1/IND-6025 within the program "Atraccion y Retencion de Talento Investigador" of the V PRICIT.Massó Ramírez, A.; Ivars-Barceló, F.; López Nieto, JM. (2020). Optimizing Reflux Synthesis Method of Mo-V-Te-Nb mixed oxide Catalysts for Light Alkane Selective Oxidation. Catalysis Today. 356:322-329. https://doi.org/10.1016/j.cattod.2019.10.030S322329356Grasselli, R. K., Burrington, J. D., Buttrey, D. J., DeSanto Jr., P., Lugmair, C. G., Volpe Jr., A. F., & Weingand, T. (2003). Topics in Catalysis, 23(1/4), 5-22. doi:10.1023/a:1024859917786Chieregato, A., López Nieto, J. M., & Cavani, F. (2015). Mixed-oxide catalysts with vanadium as the key element for gas-phase reactions. Coordination Chemistry Reviews, 301-302, 3-23. doi:10.1016/j.ccr.2014.12.003Védrine, J. C., & Fechete, I. (2016). Heterogeneous partial oxidation catalysis on metal oxides. Comptes Rendus Chimie, 19(10), 1203-1225. doi:10.1016/j.crci.2015.09.021Sprung, C., Yablonsky, G., Schlögl, R., & Trunschke, A. (2018). Constructing A Rational Kinetic Model of the Selective Propane Oxidation Over A Mixed Metal Oxide Catalyst. Catalysts, 8(8), 330. doi:10.3390/catal8080330Grasselli, R. K. (2014). Site isolation and phase cooperation: Two important concepts in selective oxidation catalysis: A retrospective. Catalysis Today, 238, 10-27. doi:10.1016/j.cattod.2014.05.036López Nieto, J. M., Solsona, B., Concepción, P., Ivars, F., Dejoz, A., & Vázquez, M. I. (2010). Reaction products and pathways in the selective oxidation of C2–C4 alkanes on MoVTeNb mixed oxide catalysts. Catalysis Today, 157(1-4), 291-296. doi:10.1016/j.cattod.2010.01.046Ushikubo, T., Oshima, K., Kayou, A., & Hatano, M. (1997). Ammoxidation of propane over Mo-V-Nb-Te mixed oxide catalysts. Spillover and Migration of Surface Species on Catalysts, Proceedings of the 4th International Conference on Spillover, 473-480. doi:10.1016/s0167-2991(97)80871-3Tsuji, H., & Koyasu, Y. (2002). Synthesis of MoVNbTe(Sb)Ox Composite Oxide Catalysts via Reduction of Polyoxometalates in an Aqueous Medium. Journal of the American Chemical Society, 124(20), 5608-5609. doi:10.1021/ja0122344BOTELLA, P. (2004). Selective oxidative dehydrogenation of ethane on MoVTeNbO mixed metal oxide catalysts. Journal of Catalysis, 225(2), 428-438. doi:10.1016/j.jcat.2004.04.024J.M. López Nieto, P. Botella, M.I. Vázquez, A. Dejoz, Method for the oxidative dehydrogenation of ethane, US Patent 7,319,179 B2 (2008). J.M. López Nieto, P. Botella, M.I. Vázquez, A. Dejoz, Method for the oxidative dehydrogenation of ethane, EP 1,479,438 A1 (2004), assigned to CSIC and UPV.Dubois, J.-L. (2005). Selective oxidation of hydrocarbons and the global warming problem. Catalysis Today, 99(1-2), 5-14. doi:10.1016/j.cattod.2004.09.019Gaffney, A. M., & Mason, O. M. (2017). Ethylene production via Oxidative Dehydrogenation of Ethane using M1 catalyst. Catalysis Today, 285, 159-165. doi:10.1016/j.cattod.2017.01.020Botella, P., García-González, E., López Nieto, J. M., & González-Calbet, J. M. (2005). MoVTeNbO multifunctional catalysts: Correlation between constituent crystalline phases and catalytic performance. Solid State Sciences, 7(5), 507-519. doi:10.1016/j.solidstatesciences.2005.01.012CELAYASANFIZ, A., HANSEN, T., SAKTHIVEL, A., TRUNSCHKE, A., SCHLOGL, R., KNOESTER, A., … HAMID, S. (2008). How important is the (001) plane of M1 for selective oxidation of propane to acrylic acid? Journal of Catalysis, 258(1), 35-43. doi:10.1016/j.jcat.2008.05.028Nguyen, T. T., Deniau, B., Baca, M., & Millet, J.-M. M. (2016). Influence of Nb Content on the Structure, Cationic and Valence Distribution and Catalytic Properties of MoVTe(Sb)NbO M1 Phase Used as Catalysts for the Oxidation of Light Alkanes. Topics in Catalysis, 59(17-18), 1496-1505. doi:10.1007/s11244-016-0667-yBotella, P., López Nieto, J. M., Solsona, B., Mifsud, A., & Márquez, F. (2002). The Preparation, Characterization, and Catalytic Behavior of MoVTeNbO Catalysts Prepared by Hydrothermal Synthesis. Journal of Catalysis, 209(2), 445-455. doi:10.1006/jcat.2002.3648Vitry, D. (2003). Mo-V-Te-(Nb)-O mixed metal oxides prepared by hydrothermal synthesis for catalytic selective oxidations of propane and propene to acrylic acid. Applied Catalysis A: General, 251(2), 411-424. doi:10.1016/s0926-860x(03)00381-8Celaya Sanfiz, A., Hansen, T. W., Girgsdies, F., Timpe, O., Rödel, E., Ressler, T., … Schlögl, R. (2008). Preparation of Phase-Pure M1 MoVTeNb Oxide Catalysts by Hydrothermal Synthesis—Influence of Reaction Parameters on Structure and Morphology. Topics in Catalysis, 50(1-4), 19-32. doi:10.1007/s11244-008-9106-zBeato, P., Blume, A., Girgsdies, F., Jentoft, R. E., Schlögl, R., Timpe, O., … Mohd Salim, L. (2006). Analysis of structural transformations during the synthesis of a MoVTeNb mixed oxide catalyst. Applied Catalysis A: General, 307(1), 137-147. doi:10.1016/j.apcata.2006.03.014HIBST, H., ROSOWSKI, F., & COX, G. (2006). New Cs-containing Mo–V4+ based oxides with the structure of the M1 phase—Base for new catalysts for the direct alkane activation. Catalysis Today, 117(1-3), 234-241. doi:10.1016/j.cattod.2006.05.045Sanfiz, A. C., Hansen, T. W., Teschner, D., Schnörch, P., Girgsdies, F., Trunschke, A., … Hamid, S. B. A. (2010). Dynamics of the MoVTeNb Oxide M1 Phase in Propane Oxidation. The Journal of Physical Chemistry C, 114(4), 1912-1921. doi:10.1021/jp909352uKardash, T. Y., Lazareva, E. V., Svintsitskiy, D. A., Ishchenko, A. V., Bondareva, V. M., & Neder, R. B. (2018). The evolution of the M1 local structure during preparation of VMoNbTeO catalysts for ethane oxidative dehydrogenation to ethylene. RSC Advances, 8(63), 35903-35916. doi:10.1039/c8ra06424eConcepción, P., Hernández, S., & Nieto, J. M. L. (2011). On the nature of active sites in MoVTeO and MoVTeNbO catalysts: The influence of catalyst activation temperature. Applied Catalysis A: General, 391(1-2), 92-101. doi:10.1016/j.apcata.2010.05.011Baca, M., & Millet, J.-M. M. (2005). Bulk oxidation state of the different cationic elements in the MoVTe(Sb)NbO catalysts for oxidation or ammoxidation of propane. Applied Catalysis A: General, 279(1-2), 67-77. doi:10.1016/j.apcata.2004.10.014Lwin, S., Diao, W., Baroi, C., Gaffney, A., & Fushimi, R. (2017). Characterization of MoVTeNbOx Catalysts during Oxidation Reactions Using In Situ/Operando Techniques: A Review. Catalysts, 7(12), 109. doi:10.3390/catal7040109Ramli, I., Botella, P., Ivars, F., Pei Meng, W., Zawawi, S. M. M., Ahangar, H. A., … Nieto, J. M. L. (2011). Reflux method as a novel route for the synthesis of MoVTeNbOx catalysts for selective oxidation of propane to acrylic acid. Journal of Molecular Catalysis A: Chemical, 342-343, 50-57. doi:10.1016/j.molcata.2011.04.009BOTELLA, P., DEJOZ, A., LOPEZNIETO, J., CONCEPCION, P., & VAZQUEZ, M. (2006). Selective oxidative dehydrogenation of ethane over MoVSbO mixed oxide catalysts. Applied Catalysis A: General, 298, 16-23. doi:10.1016/j.apcata.2005.09.018Leclaire, A., Borel, M. M., Chardon, J., & Raveau, B. (1995). A mixed valent Keggin polyoxometallate involving molybdenum and tungsten. Materials Research Bulletin, 30(9), 1075-1080. doi:10.1016/0025-5408(95)00103-4Corella-Ochoa, M. N., Miras, H. N., Kidd, A., Long, D.-L., & Cronin, L. (2011). Assembly of a family of mixed metal {Mo : V} polyoxometalates templated by TeO32−: {Mo12V12Te3}, {Mo12V12Te2} and {Mo17V8Te}. Chemical Communications, 47(31), 8799. doi:10.1039/c1cc12782aBotella, P., López Nieto, J. M., & Solsona, B. (2002). Catalysis Letters, 78(1/4), 383-387. doi:10.1023/a:1014973005107Mestl, G. (2002). In situ Raman spectroscopy for the characterization of MoVW mixed oxide catalysts. Journal of Raman Spectroscopy, 33(5), 333-347. doi:10.1002/jrs.843Dieterle, M., & Mestl, G. (2002). Raman spectroscopy of molybdenum oxides. Physical Chemistry Chemical Physics, 4(5), 822-826. doi:10.1039/b107046kKnoezinger, H., & Jeziorowski, H. (1978). Raman spectra of molybdenum oxide supported on the surface of aluminas. The Journal of Physical Chemistry, 82(18), 2002-2005. doi:10.1021/j100507a011SOLSONA, B., VAZQUEZ, M., IVARS, F., DEJOZ, A., CONCEPCION, P., & LOPEZNIETO, J. (2007). Selective oxidation of propane and ethane on diluted Mo–V–Nb–Te mixed-oxide catalysts. Journal of Catalysis, 252(2), 271-280. doi:10.1016/j.jcat.2007.09.019Nguyen, T. T., Burel, L., Nguyen, D. L., Pham-Huu, C., & Millet, J. M. M. (2012). Catalytic performance of MoVTeNbO catalyst supported on SiC foam in oxidative dehydrogenation of ethane and ammoxidation of propane. Applied Catalysis A: General, 433-434, 41-48. doi:10.1016/j.apcata.2012.04.03
    corecore