1 research outputs found

    Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change

    No full text
    This review examines the role of the atmospheric evaporative demand (AED) in drought. AED is a complex concept and here we discuss possible AED definitions, the subsequent metrics to measure and estimate AED, and the different physical drivers that control it. The complex influence of AED on meteorological, environmental/agricultural and hydrological droughts is discussed, stressing the important spatial differences related to the climatological conditions. Likewise, AED influence on drought has implications regarding how different drought metrics consider AED in their attempts to quantify drought severity. Throughout the article, we assess literature findings with respect to: (a) recent drought trends and future projections; (b) the several uncertainties related to data availability; (c) the sensitivity of current drought metrics to AED; and (d) possible roles that both the radiative and physiological effects of increasing atmospheric CO2 concentrations may play as we progress into the future. All these issues preclude identifying a simple effect of the AED on drought severity. Rather it calls for different evaluations of drought impacts and trends under future climate scenarios, considering the complex feedbacks governing the climate system. This article is categorized under: Paleoclimates and Current Trends > Earth System Behavio
    corecore