1 research outputs found

    Tuneable Emission of Polyhedral Oligomeric Silsesquioxane Based Nanostructures that Self-Assemble in the Presence of Europium(III) Ions: Reversible trans-to-cis Isomerization

    Full text link
    [EN] Hybrid nanostructures with switchable and reversible "blue-red-green" emission were efficiently synthesized. These nanostructures comprise polyhedral oligomeric silsesquioxanes (POSS) that behave as a nanocage that can be functionalized with terpyridine-based organic ligands, which can be easily complexed with europium (III) ions. The complexes were characterized by UV-Vis and fluorescence spectroscopy and their stoichiometry was also confirmed by H-1 NMR spectroscopy. In the presence of the Eu(III) ions, the octafunctionalized nanocages self-assemble to form 3D architectures that display an intense red-emission, especially in the solid state. The presence of an alkenyl group bridging the inorganic core to the organic moiety was employed to tune the emission properties by trans-cis isomerization of the double bond. In the case of the octafunctionalized nanocages (O-POSS), this isomerization was monitored in the presence of Eu(III) cations and was accompanied by an evident colour change from blue (trans-O-POSS) to red (Eu@trans-O-POSS) and finally to green (cis-O-POSS) as consequence of the release of the metal cations. This behaviour, together with the easy dispersion of the dry powder and the possibility of coating as a film in presence of small amounts of solvent, makes the emissive solid promising for applications in materials science.The authors acknowledge the University of Palermo and the University of Namur. V.C. gratefully acknowledges the University of Palermo and University of Namur for a co-funded PhD fellowship.Cinà, V.; Carbonell, E.; Fusaro, L.; García Gómez, H.; Gruttadauria, M.; Giacalone, F.; Aprile, C. (2020). Tuneable Emission of Polyhedral Oligomeric Silsesquioxane Based Nanostructures that Self-Assemble in the Presence of Europium(III) Ions: Reversible trans-to-cis Isomerization. ChemPlusChem. 85(3):391-398. https://doi.org/10.1002/cplu.201900575S391398853Duchateau, R., van Meerendonk, W. J., Huijser, S., Staal, B. B. P., van Schilt, M. A., Gerritsen, G., … Keurentjes, J. T. F. (2007). Silica-Grafted Diethylzinc and a Silsesquioxane-Based Zinc Alkyl Complex as Catalysts for the Alternating Oxirane−Carbon Dioxide Copolymerization. Organometallics, 26(17), 4204-4211. doi:10.1021/om700367xKunthom, R., Jaroentomeechai, T., & Ervithayasuporn, V. (2017). Polyhedral oligomeric silsesquioxane (POSS) containing sulfonic acid groups as a metal-free catalyst to prepare polycaprolactone. Polymer, 108, 173-178. doi:10.1016/j.polymer.2016.11.038Wada, K., Nakashita, M., & Mitsudo, T. (1998). Active catalysts prepared using a vanadium-containing oligosilsesquioxane for selective photo-assisted oxidation of methane into methanal. Chemical Communications, (1), 133-134. doi:10.1039/a707173fKannan, R. Y., Salacinski, H. J., Ghanavi, J., Narula, A., Odlyha, M., Peirovi, H., … Seifalian, A. M. (2007). Silsesquioxane Nanocomposites as Tissue Implants. Plastic and Reconstructive Surgery, 119(6), 1653-1662. doi:10.1097/01.prs.0000246404.53831.4cRizvi, S. B., Yang, S. Y., Green, M., Keshtgar, M., & Seifalian, A. M. (2015). Novel POSS–PCU Nanocomposite Material as a Biocompatible Coating for Quantum Dots. Bioconjugate Chemistry, 26(12), 2384-2396. doi:10.1021/acs.bioconjchem.5b00462Zhang, C., Babonneau, F., Bonhomme, C., Laine, R. M., Soles, C. L., Hristov, H. A., & Yee, A. F. (1998). Highly Porous Polyhedral Silsesquioxane Polymers. Synthesis and Characterization. Journal of the American Chemical Society, 120(33), 8380-8391. doi:10.1021/ja9808853Bivona, L. A., Fichera, O., Fusaro, L., Giacalone, F., Buaki-Sogo, M., Gruttadauria, M., & Aprile, C. (2015). A polyhedral oligomeric silsesquioxane-based catalyst for the efficient synthesis of cyclic carbonates. Catalysis Science & Technology, 5(11), 5000-5007. doi:10.1039/c5cy00830aCalabrese, C., Liotta, L. F., Giacalone, F., Gruttadauria, M., & Aprile, C. (2018). Supported Polyhedral Oligomeric Silsesquioxane‐Based (POSS) Materials as Highly Active Organocatalysts for the Conversion of CO 2. ChemCatChem, 11(1), 560-567. doi:10.1002/cctc.201801351Bivona, L. A., Giacalone, F., Carbonell, E., Gruttadauria, M., & Aprile, C. (2016). Proximity Effect using a Nanocage Structure: Polyhedral Oligomeric Silsesquioxane-Imidazolium Tetrachloro- palladate Salt as a Precatalyst for the Suzuki-Miyaura Reaction in Water. ChemCatChem, 8(9), 1685-1691. doi:10.1002/cctc.201600155Hartmann-Thompson, C., Keeley, D. L., Pollock, K. M., Dvornic, P. R., Keinath, S. E., Dantus, M., … LeCaptain, D. J. (2008). One- and Two-Photon Fluorescent Polyhedral Oligosilsesquioxane (POSS) Nanosensor Arrays for the Remote Detection of Analytes in Clouds, in Solution, and on Surfaces. Chemistry of Materials, 20(8), 2829-2838. doi:10.1021/cm703641sCarbonell, E., Bivona, L. A., Fusaro, L., & Aprile, C. (2017). Silsesquioxane–Terpyridine Nano Building Blocks for the Design of Three-Dimensional Polymeric Networks. Inorganic Chemistry, 56(11), 6393-6403. doi:10.1021/acs.inorgchem.7b00471Escribano, P., Julián-López, B., Planelles-Aragó, J., Cordoncillo, E., Viana, B., & Sanchez, C. (2008). Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials. J. Mater. Chem., 18(1), 23-40. doi:10.1039/b710800aLI, L., FENG, S., & LIU, H. (2015). Novel hybrid luminescent materials derived from multicarboxy cage silsesquioxanes and terbium ion. Journal of the Ceramic Society of Japan, 123(1441), 719-724. doi:10.2109/jcersj2.123.719Li, L., Feng, S., & Liu, H. (2014). Hybrid lanthanide complexes based on a novel β-diketone functionalized polyhedral oligomeric silsesquioxane (POSS) and their nanocomposites with PMMA via in situ polymerization. RSC Adv., 4(74), 39132-39139. doi:10.1039/c4ra05577bBekiari, V., & Lianos, P. (2003). Multicolor emission from terpyridine–lanthanide ion complexes encapsulated in nanocomposite silica/poly(ethylene glycol) sol–gel matrices. Journal of Luminescence, 101(1-2), 135-140. doi:10.1016/s0022-2313(02)00405-2Chung, J. W., Yoon, S.-J., An, B.-K., & Park, S. Y. (2013). High-Contrast On/Off Fluorescence Switching via Reversible E–Z Isomerization of Diphenylstilbene Containing the α-Cyanostilbenic Moiety. The Journal of Physical Chemistry C, 117(21), 11285-11291. doi:10.1021/jp401440sDugave, C., & Demange, L. (2003). Cis−Trans Isomerization of Organic Molecules and Biomolecules:  Implications and Applications. Chemical Reviews, 103(7), 2475-2532. doi:10.1021/cr0104375Lin, L.-R., Tang, H.-H., Wang, Y.-G., Wang, X., Fang, X.-M., & Ma, L.-H. (2017). Functionalized Lanthanide(III) Complexes Constructed from Azobenzene Derivative and β-Diketone Ligands: Luminescent, Magnetic, and Reversible Trans-to-Cis Photoisomerization Properties. Inorganic Chemistry, 56(7), 3889-3900. doi:10.1021/acs.inorgchem.6b02819Bian, M., Wang, Y., Guo, X., Lv, F., Chen, Z., Duan, L., … Xiao, L. (2018). Positional isomerism effect of spirobifluorene and terpyridine moieties of «(A)n–D–(A)n» type electron transport materials for long-lived and highly efficient TADF-PhOLEDs. Journal of Materials Chemistry C, 6(38), 10276-10283. doi:10.1039/c8tc03796eAndres, J., & Chauvin, A.-S. (2010). Europium Complexes of Tris(dipicolinato) Derivatives Coupled to Methylumbelliferone: A Double Sensitization. European Journal of Inorganic Chemistry, 2010(18), 2700-2713. doi:10.1002/ejic.201000126Divya, V., Freire, R. O., & Reddy, M. L. P. (2011). Tuning of the excitation wavelength from UV to visible region in Eu3+-β-diketonate complexes: Comparison of theoretical and experimental photophysical properties. Dalton Transactions, 40(13), 3257. doi:10.1039/c0dt01652gZhang, Z.-M., Han, F.-F., Zhang, R., Li, N., & Ni, Z.-H. (2016). Design, syntheses and aggregation-induced emission properties of two new enlarged tetraarylethene-based luminogens. Tetrahedron Letters, 57(17), 1917-1920. doi:10.1016/j.tetlet.2016.03.07
    corecore