2,441 research outputs found

    A Recipe for State Dependent Distributed Delay Differential Equations

    Full text link
    We use the McKendrick equation with variable ageing rate and randomly distributed maturation time to derive a state dependent distributed delay differential equation. We show that the resulting delay differential equation preserves non-negativity of initial conditions and we characterise local stability of equilibria. By specifying the distribution of maturation age, we recover state dependent discrete, uniform and gamma distributed delay differential equations. We show how to reduce the uniform case to a system of state dependent discrete delay equations and the gamma distributed case to a system of ordinary differential equations. To illustrate the benefits of these reductions, we convert previously published transit compartment models into equivalent distributed delay differential equations.Comment: 28 page

    Identification of a hereditary system with distributed delay

    Get PDF
    We study the identification problem that arises in a linear hereditary system with distributed delay. This involves estimating an infinite-dimensional parameter and we use the method of sieves, proposed by Grenander, to solve this problem

    Moment Boundedness of Linear Stochastic Delay Differential Equation with Distributed Delay

    Get PDF
    This paper studies the moment boundedness of solutions of linear stochastic delay differential equations with distributed delay. For a linear stochastic delay differential equation, the first moment stability is known to be identical to that of the corresponding deterministic delay differential equation. However, boundedness of the second moment is complicated and depends on the stochastic terms. In this paper, the characteristic function of the equation is obtained through techniques of Laplace transform. From the characteristic equation, sufficient conditions for the second moment to be bounded or unbounded are proposed.Comment: 38 pages, 2 figure

    On a predator prey model with nonlinear harvesting and distributed delay

    Get PDF
    A predator prey model with nonlinear harvesting (Holling type-II) with both constant and distributed delay is considered. The boundeness of solutions is proved and some sufficient conditions ensuring the persistence of the two populations are established. Also, a detailed study of the bifurcation of positive equilibria is provided. All the results are illustrated by some numerical simulations.Ministerio de Economía y CompetitividadFondo Europeo de Desarrollo RegionalConsejería de Innovación, Ciencia y Empresa (Junta de Andalucía

    Optimal linear stability condition for scalar differential equations with distributed delay

    Get PDF
    Linear scalar differential equations with distributed delays appear in the study of the local stability of nonlinear differential equations with feedback, which are common in biology and physics. Negative feedback loops tend to promote oscillations around steady states, and their stability depends on the particular shape of the delay distribution. Since in applications the mean delay is often the only reliable information available about the distribution, it is desirable to find conditions for stability that are independent from the shape of the distribution. We show here that for a given mean delay, the linear equation with distributed delay is asymptotically stable if the associated differential equation with a discrete delay is asymptotically stable. We illustrate this criterion on a compartment model of hematopoietic cell dynamics to obtain sufficient conditions for stability

    Spiking Activity of a LIF Neuron in Distributed Delay Framework

    Get PDF
    Evolution of membrane potential and spiking activity for a single leaky integrate-and-fire (LIF) neuron in distributed delay framework (DDF) is investigated. DDF provides a mechanism to incorporate memory element in terms of delay (kernel) function into a single neuron models. This investigation includes LIF neuron model with two different kinds of delay kernel functions, namely, gamma distributed delay kernel function and hypo-exponential distributed delay kernel function. Evolution of membrane potential for considered models is studied in terms of stationary state probability distribution (SPD). Stationary state probability distribution of membrane potential (SPDV) for considered neuron models are found asymptotically similar which is Gaussian distributed. In order to investigate the effect of membrane potential delay, rate code scheme for neuronal information processing is applied. Firing rate and Fano-factor for considered neuron models are calculated and standard LIF model is used for comparative study. It is noticed that distributed delay increases the spiking activity of a neuron. Increase in spiking activity of neuron in DDF is larger for hypo-exponential distributed delay function than gamma distributed delay function. Moreover, in case of hypo-exponential delay function, a LIF neuron generates spikes with Fano-factor less than 1
    • …
    corecore