41,391 research outputs found

    Limited association between disinfectant use and either antibiotic or disinfectant susceptibility of Escherichia coli in both poultry and pig husbandry

    Get PDF
    Background Farm disinfectants are widely used in primary production, but questions have been raised if their use can select for antimicrobial resistance. The present study examined the use of disinfectants in poultry and pig husbandry and its contribution to the antibiotic and disinfectant susceptibility of Escherichia coli (E. coli) strains obtained after cleaning and disinfection. On those field isolates antibiotic susceptibility was monitored and susceptibility to commonly used active components of farm disinfectants (i.e. glutaraldehyde, benzalkoniumchloride, formaldehyde, and a formulation of peracetic acid and hydrogen peroxide) was tested. Results This study showed a high resistance prevalence (> 50%) for ampicillin, sulfamethoxazole, trimethoprim and tetracycline for both production animal categories, while for ciprofloxacin only a high resistance prevalence was found in broiler houses. Disinfectant susceptibility results were homogenously distributed within a very small concentration range. Furthermore, all E. coli strains were susceptible to in-use concentrations of formaldehyde, benzalkoniumchloride and a formulation of peracetic acid and hydrogen peroxide, indicating that the practical use of disinfectants did not select for disinfectant resistance. Moreover, the results showed no indications for the selection of antibiotic resistant bacteria through the use of disinfectants in agricultural environments. Conclusion Our study suggests that the proper use of disinfectants in agricultural environments does not promote antibiotic resistance nor reduce E. coli disinfectant susceptibility

    Synergistic efficacy of 405 nm light and chlorinated disinfectants for the enhanced decontamination of Clostridium difficile spores

    Get PDF
    The ability of Clostridium difficile to form highly resilient spores which can survive in the environment for prolonged periods causes major contamination problems. Antimicrobial 405 nm light is being developed for environmental decontamination within hospitals, however further information relating to its sporicidal efficacy is required. This study aims to establish the efficacy of 405 nm light for inactivation of C. difficile vegetative cells and spores, and to establish whether spore susceptibility can be enhanced by the combined use of 405 nm light with low concentration chlorinated disinfectants. Vegetative cells and spore suspensions were exposed to increasing doses of 405 nm light (at 70–225 mW/cm2) to establish sensitivity. A 99.9% reduction in vegetative cell population was demonstrated with a dose of 252 J/cm2, however spores demonstrated higher resilience, with a 10-fold increase in required dose. Exposures were repeated with spores suspended in the hospital disinfectants sodium hypochlorite, Actichlor and Tristel at non-lethal concentrations (0.1%, 0.001% and 0.0001%, respectively). Enhanced sporicidal activity was achieved when spores were exposed to 405 nm light in the presence of the disinfectants, with a 99.9% reduction achieved following exposure to 33% less light dose than required when exposed to 405 nm light alone. In conclusion, C. difficile vegetative cells and spores can be successfully inactivated using 405 nm light, the sporicidal efficacy can be significantly enhanced when exposed in the presence of low concentration chlorinated disinfectants. Further research may lead to the potential use of 405 nm light decontamination in combination with selected hospital disinfectants to enhance C. difficile cleaning and infection control procedures

    Efficacy of common laboratory disinfectants and heat on killing trypanosomatid parasites

    Get PDF
    The disinfectants TriGene, bleach, ethanol and liquid hand soap, and water and temperature were tested for their ability to kill bloodstream forms of Trypanosoma brucei, epimastigotes of Trypanosoma rangeli and promastigotes of Leishmania major. A 5-min exposure to 0.2% TriGene, 0.1% liquid hand soap and 0.05% bleach (0.05% NaOCl) killed all three trypanosomatids. Ethanol and water destroyed the parasites within 5 min at concentrations of 15-17.5% and 80-90%, respectively. All three organisms were also killed when treated for 5 min at 50 degrees C. The results indicate that the disinfectants, water and temperature treatment (i.e. autoclaving) are suitable laboratory hygiene measures against trypanosomatid parasites

    Efficacy of chemical disinfectants for the containment of the salamander chytrid fungus Batrachochytrium salamandrivorans

    Get PDF
    The recently emerged chytrid fungus Batrachochytrium salamandrivorans (Bsal) causes European salamander declines. Proper hygiene protocols including disinfection procedures are crucial to prevent disease transmission. Here, the efficacy of chemical disinfectants in killing Bsal was evaluated. At all tested conditions, Biocidal (R), Chloramine-T (R), Dettol medical (R), Disolol (R), ethanol, F10 (R), Hibiscrub (R), potassium permanganate, Safe4 (R), sodium hypochlorite, and Virkon S (R), were effective at killing Bsal. Concentrations of 5% sodium chloride or lower, 0.01% peracetic acid and 0.001-1% copper sulphate were inactive against Bsal. None of the conditions tested for hydrogen peroxide affected Bsal viability, while it did kill Batrachochytrium dendrobatidis (Bd). For Bsal, enzymatic breakdown of hydrogen peroxide by catalases and specific morphological features (clustering of sporangia, development of new sporangia within the original sporangium), were identified as fungal factors altering susceptibility to several of the disinfectants tested. Based on the in vitro results we recommend 1% Virkon S (R), 4% sodium hypochlorite and 70% ethanol for disinfecting equipment in the field, lab or captive setting, with a minimal contact time of 5 minutes for 1% Virkon S (R) and 1 minute for the latter disinfectants. These conditions not only efficiently target Bsal, but also Bd and Ranavirus

    Does limited virucidal activity of biocides include duck hepatitis B virucidal action?

    Get PDF
    BACKGROUND: There is agreement that the infectivity assay with the duck hepatitis B virus (DHBV) is a suitable surrogate test to validate disinfectants for hepatitis B virucidal activity. However, since this test is not widely used, information is necessary whether disinfectants with limited virucidal activity also inactivate DHBV. In general, disinfectants with limited virucidal activity are used for skin and sensitive surfaces while agents with full activity are more aggressive. The present study compares the activity of five different biocides against DHBV and the classical test virus for limited virucidal activity, the vaccinia virus strain Lister Elstree (VACV) or the modified vaccinia Ankara strain (MVA). METHODS: Virucidal assay was performed as suspension test according to the German DVV/RKI guideline. Duck hepatitis B virus obtained from congenitally infected Peking ducks was propagated in primary duck embryonic hepatocytes and was detected by indirect immunofluorescent antigen staining. RESULTS: The DHBV was inactivated by the use of 40% ethanol within 1-min and 30% isopropanol within 2-min exposure. In comparison, 40% ethanol within 2-min and 40% isopropanol within 1-min exposure were effective against VACV/MVA. These alcohols only have limited virucidal activity, while the following agents have full activity. 0.01% peracetic acid inactivated DHBV within 2 min and a concentration of 0.005% had virucidal efficacy against VACV/MVA within 1 min. After 2-min exposure, 0.05% glutardialdehyde showed a comparable activity against DHBV and VACV/MVA. This is also the case for 0.7% formaldehyde after a contact time of 30 min. CONCLUSIONS: Duck hepatitis B virus is at least as sensitive to limited virucidal activity as VACV/MVA. Peracetic acid is less effective against DHBV, while the alcohols are less effective against VACV/MVA. It can be expected that in absence of more direct tests the results may be extrapolated to HBV

    Tolerance of Pseudomonas aeruginosa in in vitro biofilms to high level peracetic acid disinfection

    Get PDF
    Biofilm has been suggested as a cause of disinfection failures in flexible endoscopes where no lapses in the decontamination procedure can be identified. To test this theory, the activity of peracetic acid (PAA), one of the commonly used disinfectants in the reprocessing of flexible endoscopes, was evaluated against both planktonic and sessile communities of Pseudomonas aeruginosa. To investigate the ability of P. aeruginosa biofilm to survive high level PAA disinfection. The susceptibility of planktonic cells of P. aeruginosa and biofilms 24, 48, 96 and 192 h old to PAA was evaluated by estimating their viability using resazurin viability and plate count methods. The biomass of the P. aeruginosa biofilms was also quantified using crystal violet assay. Planktonic cells of P. aeruginosa were treated with 5 - 30 ppm concentration of PAA in the presence of 3.0 g/L of Bovine serum albumin (BSA) for 5 min. Biofilms of P. aeruginosa were also treated with various PAA concentrations (100 - 3000 ppm) for 5 min. Planktonic cells of P. aeruginosa were eradicated by 20 ppm of PAA, whereas biofilms showed an age dependent tolerance to PAA, and 96 h old biofilm was only eradicated at PAA concentration of 2500 ppm. 96 h old P. aeruginosa biofilm survives 5 min treatment with 2000 ppm of PAA, which is the working concentration used in some endoscope washer disinfectors. This implies that disinfection failure of flexible endoscopes could occur when biofilms are allowed to build up in the lumens of endoscopes

    Exposure of ciprofloxacin-resistant Escherichia coli broiler isolates to subinhibitory concentrations of a quaternary ammonium compound does not increase antibiotic resistance gene transfer

    Get PDF
    Resistance to antibiotics threatens to become a worldwide health problem. An important attributing phenomenon in this context is that pathogens can acquire antibiotic resistance genes through conjugative transfer of plasmids. To prevent bacterial infections in agricultural settings, the use of veterinary hygiene products, such as disinfectants, has gained popularity and questions have been raised about their contribution to such spreading of antibiotic resistance. Therefore, this study investigated the effect of subinhibitory concentrations of benzalkoniumchloride (BKC), a quaternary ammonium compound (QAC), on the conjugative transfer of antibiotic resistance genes. Five Escherichia coli field strains originating from broiler chickens and with known transferable plasmid-mediated ciprofloxacin resistance were exposed to subinhibitory BKC concentrations: 1/3, 1/10 and 1/30 of the minimum bactericidal concentration. Antibiotic resistance transfer was assessed by liquid mating for 4 h at 25 degrees C using E. coli K12 MG1655 as recipient strain. The transfer ratio was calculated as the number of transconjugants divided by the number of recipients. Without exposure to BKC, the strains showed a ciprofloxacin resistance transfer ratio ranging from 10(-4) to 10(-7). No significant effect of exposure to subinhibitory concentrations of BKC was observed on this transfer ratio

    Experimental colonization of Ulva spp. with algal-epiphytic antagonistic bacteria as a strategy for pathogen control in integrated multi-trophic aquaculture recirculating systems

    Get PDF
    Probiotics are a potential tool for bacterial control in aquaculture (Pintado et al. 2011), decreasing the use of disinfectants and antibiotics and contributing to an ecosystem approach, which is more sustainable and respectful to the environment.Postprint (published version

    Surface disinfection challenges for Candida auris: an in-vitro study

    Get PDF
    The emerging pathogenic multidrug-resistant yeast Candida auris is an important source of healthcare-associated infections and of growing global clinical concern. The ability of this organism to survive on surfaces and withstand environmental stressors creates a challenge for eradicating it from hospitals. A panel of C. auris clinical isolates was evaluated on different surface environments against the standard disinfectant sodium hypochlorite and high-level disinfectant peracetic acid. C. auris was shown to selectively tolerate clinically relevant concentrations of sodium hypochlorite and peracetic acid in a surface-dependent manner, which may explain its ability to successfully persist within the hospital environment
    • 

    corecore