3,880 research outputs found

    Direction of arrival estimation using robust complex Lasso

    Full text link
    The Lasso (Least Absolute Shrinkage and Selection Operator) has been a popular technique for simultaneous linear regression estimation and variable selection. In this paper, we propose a new novel approach for robust Lasso that follows the spirit of M-estimation. We define MM-Lasso estimates of regression and scale as solutions to generalized zero subgradient equations. Another unique feature of this paper is that we consider complex-valued measurements and regression parameters, which requires careful mathematical characterization of the problem. An explicit and efficient algorithm for computing the MM-Lasso solution is proposed that has comparable computational complexity as state-of-the-art algorithm for computing the Lasso solution. Usefulness of the MM-Lasso method is illustrated for direction-of-arrival (DoA) estimation with sensor arrays in a single snapshot case.Comment: Paper has appeared in the Proceedings of the 10th European Conference on Antennas and Propagation (EuCAP'2016), Davos, Switzerland, April 10-15, 201

    Comparative study for broadband direction of arrival estimation techniques

    Get PDF
    This paper reviews and compares three different linear algebraic signal subspace techniques for broadband direction of arrival estimation --- (i) the coherent signal subspace approach, (ii) eigenanalysis of the parameterised spatial correlation matrix, and (iii) a polynomial version of the multiple signal classification algorithm. Simulation results comparing the accuracy of these methods are presented

    Array signal processing for maximum likelihood direction-of-arrival estimation

    Get PDF
    Emitter Direction-of-Arrival (DOA) estimation is a fundamental problem in a variety of applications including radar, sonar, and wireless communications. The research has received considerable attention in literature and numerous methods have been proposed. Maximum Likelihood (ML) is a nearly optimal technique producing superior estimates compared to other methods especially in unfavourable conditions, and thus is of significant practical interest. This paper discusses in details the techniques for ML DOA estimation in either white Gaussian noise or unknown noise environment. Their performances are analysed and compared, and evaluated against the theoretical lower bounds

    Off-grid Direction of Arrival Estimation Using Sparse Bayesian Inference

    Full text link
    Direction of arrival (DOA) estimation is a classical problem in signal processing with many practical applications. Its research has recently been advanced owing to the development of methods based on sparse signal reconstruction. While these methods have shown advantages over conventional ones, there are still difficulties in practical situations where true DOAs are not on the discretized sampling grid. To deal with such an off-grid DOA estimation problem, this paper studies an off-grid model that takes into account effects of the off-grid DOAs and has a smaller modeling error. An iterative algorithm is developed based on the off-grid model from a Bayesian perspective while joint sparsity among different snapshots is exploited by assuming a Laplace prior for signals at all snapshots. The new approach applies to both single snapshot and multi-snapshot cases. Numerical simulations show that the proposed algorithm has improved accuracy in terms of mean squared estimation error. The algorithm can maintain high estimation accuracy even under a very coarse sampling grid.Comment: To appear in the IEEE Trans. Signal Processing. This is a revised, shortened version of version

    Multiple source direction of arrival estimation using subspace pseudointensity vectors

    Full text link
    The recently proposed subspace pseudointensity method for direction of arrival estimation is applied in the context of Tasks 1 and 2 of the LOCATA Challenge using the Eigenmike recordings. Specific implementation details are described and results reported for the development dataset, for which the ground truth source directions are available. For both single and multiple source scenarios, the average absolute error angle is about 9 degrees.Comment: In Proceedings of the LOCATA Challenge Workshop - a satellite event of IWAENC 2018 (arXiv:1811.08482

    A Multichannel Spatial Compressed Sensing Approach for Direction of Arrival Estimation

    Get PDF
    The final publication is available at http://link.springer.com/chapter/10.1007%2F978-3-642-15995-4_57ESPRC Leadership Fellowship EP/G007144/1EPSRC Platform Grant EP/045235/1EU FET-Open Project FP7-ICT-225913\"SMALL
    corecore