118 research outputs found

    Subspace Clustering via Optimal Direction Search

    Full text link
    This letter presents a new spectral-clustering-based approach to the subspace clustering problem. Underpinning the proposed method is a convex program for optimal direction search, which for each data point d finds an optimal direction in the span of the data that has minimum projection on the other data points and non-vanishing projection on d. The obtained directions are subsequently leveraged to identify a neighborhood set for each data point. An alternating direction method of multipliers framework is provided to efficiently solve for the optimal directions. The proposed method is shown to notably outperform the existing subspace clustering methods, particularly for unwieldy scenarios involving high levels of noise and close subspaces, and yields the state-of-the-art results for the problem of face clustering using subspace segmentation

    Innovation Pursuit: A New Approach to Subspace Clustering

    Full text link
    In subspace clustering, a group of data points belonging to a union of subspaces are assigned membership to their respective subspaces. This paper presents a new approach dubbed Innovation Pursuit (iPursuit) to the problem of subspace clustering using a new geometrical idea whereby subspaces are identified based on their relative novelties. We present two frameworks in which the idea of innovation pursuit is used to distinguish the subspaces. Underlying the first framework is an iterative method that finds the subspaces consecutively by solving a series of simple linear optimization problems, each searching for a direction of innovation in the span of the data potentially orthogonal to all subspaces except for the one to be identified in one step of the algorithm. A detailed mathematical analysis is provided establishing sufficient conditions for iPursuit to correctly cluster the data. The proposed approach can provably yield exact clustering even when the subspaces have significant intersections. It is shown that the complexity of the iterative approach scales only linearly in the number of data points and subspaces, and quadratically in the dimension of the subspaces. The second framework integrates iPursuit with spectral clustering to yield a new variant of spectral-clustering-based algorithms. The numerical simulations with both real and synthetic data demonstrate that iPursuit can often outperform the state-of-the-art subspace clustering algorithms, more so for subspaces with significant intersections, and that it significantly improves the state-of-the-art result for subspace-segmentation-based face clustering

    Braid groups in complex Grassmannians

    Get PDF
    We describe the fundamental group and second homotopy group of ordered kk-point sets in Gr(k,n)Gr(k,n) generating a subspace of fixed dimension.Comment: 10 page

    An Improved Lower Bound for Sparse Reconstruction from Subsampled Hadamard Matrices

    Full text link
    We give a short argument that yields a new lower bound on the number of subsampled rows from a bounded, orthonormal matrix necessary to form a matrix with the restricted isometry property. We show that a matrix formed by uniformly subsampling rows of an N×NN \times N Hadamard matrix contains a KK-sparse vector in the kernel, unless the number of subsampled rows is Ω(KlogKlog(N/K))\Omega(K \log K \log (N/K)) --- our lower bound applies whenever min(K,N/K)>logCN\min(K, N/K) > \log^C N. Containing a sparse vector in the kernel precludes not only the restricted isometry property, but more generally the application of those matrices for uniform sparse recovery.Comment: Improved exposition and added an autho
    corecore