Title	Braid groups in complex Grassmannians
Author(s)	Manfredini, Sandro; Settepanella, Simona
Citation	Topology and Its A pplications, 176, 51-56 https:/doi.org/10.1016/.topol.2014.07.010
Issue Date	2014-10-01
Doc URL	(C) 2014:/hdsevier B.V. All rights reserved.
Rights	article (author version)
Type	TA_176_51-.pdf
File Information	

Instructions for use

Braid groups in complex Grassmannians

Sandro Manfredini* ${ }^{*}$ Simona Settepanella ${ }^{\dagger}$

July 17, 2014

Abstract

We describe the fundamental group and second homotopy group of ordered k-point sets in $\operatorname{Gr}(k, n)$ generating a subspace of fixed dimension.

Keywords:

complex space, configuration spaces, braid groups.

MSC (2010): 20F36, 52C35, 57M05, 51A20.

1 Introduction

Let M be a manifold and Σ_{h} be the symmetric group on h elements.
The ordered and unordered configuration spaces of h distinct points in M, $\mathcal{F}_{h}(M)=\left\{\left(x_{1}, \ldots, x_{h}\right) \in M^{h} \mid x_{i} \neq x_{j}, i \neq j\right\}$ and $\mathcal{C}_{h}(M)=\mathcal{F}_{h}(M) / \Sigma_{h}$, have been widely studied. In recent papers ([BP, MPS, MS]), new configuration spaces were introduced when M is, respectively, the projective space $\mathbb{C P}^{n}$, the affine space \mathbb{C}^{n} and the Grassmannian manifold $G r(k, n)$ of k dimensional subspaces of \mathbb{C}^{n}, by stratifying the configuration spaces $\mathcal{F}_{h}(M)$ (resp. $\mathcal{C}_{h}(M)$) with complex submanifolds $\mathcal{F}_{h}^{i}(M)$ (resp. $\mathcal{C}_{h}^{i}(M)$) defined as the ordered (resp. unordered) configuration spaces of all h points in M

[^0]generating a subspace of dimension i. The homotopy groups of those configuration spaces are interesting as they are strongly related to the homotopy groups of the Grassmannian manifolds, i.e. of spheres.
In $[\mathrm{BP}]$ (resp. [MPS]), the fundamental groups $\pi_{1}\left(\mathcal{F}_{h}^{i}\left(\mathbb{C P}^{n}\right)\right)$ and $\pi_{1}\left(\mathcal{C}_{h}^{i}\left(\mathbb{C P}^{n}\right)\right)$ (resp. $\pi_{1}\left(\mathcal{F}_{h}^{i}\left(\mathbb{C}^{n}\right)\right)$ and $\pi_{1}\left(\mathcal{C}_{h}^{i}\left(\mathbb{C}^{n}\right)\right)$) are computed, proving that the former are trivial and the latter are isomorphic to the symmetric group Σ_{h} except when $i=1$ (resp. $i=1$ and $i=n=h-1$) providing, in this last case, a presentation for both $\pi_{1}\left(\mathcal{F}_{h}^{1}\left(\mathbb{C P}^{n}\right)\right)$ and $\pi_{1}\left(\mathcal{C}_{h}^{1}\left(\mathbb{C P}^{n}\right)\right)$ (resp. $\pi_{1}\left(\mathcal{F}_{h}^{i}\left(\mathbb{C}^{n}\right)\right)$ and $\left.\pi_{1}\left(\mathcal{C}_{h}^{i}\left(\mathbb{C}^{n}\right)\right)\right)$ which is similar to those of the braid groups of the sphere.
In this paper we generalize the results obtained in $[\mathrm{BP}]$ when M is the projective space $\mathbb{C P}^{n-1}=G r(1, n)$, to the case of Grassmannian manifold $\operatorname{Gr}(k, n)$ of k-dimensional subspaces of \mathbb{C}^{n}. We prove that if $\mathcal{F}_{h}^{i}(k, n)$ is the i-th ordered configuration space of all distinct points H_{1}, \ldots, H_{h} in the Grassmannian manifold $G r(k, n)$ whose sum is a subspace of dimension i, then the following result holds.

Theorem 1.1. The non-empty ordered configuration spaces $\mathcal{F}_{h}^{i}(k, n)$ are all simply connected if $k>1$.

From this, we immediately obtain that the fundamental group of the i-th unordered configuration space $\mathcal{F}_{h}^{i}(k, n) / \Sigma_{h}$ is isomorphic to Σ_{h}.
These results are stated in Section 2. In Section 3 we compute the second homotopy group of the i-th configuration spaces in two special cases: the case in which the subspaces are in direct sum and the case of two subspaces.

Theorem 1.2. If $h k<n, \pi_{2}\left(\mathcal{F}_{h}^{h k}(k, n)\right)=\mathbb{Z}^{h}$, while $\pi_{2}\left(\mathcal{F}_{h}^{h k}(k, h k)\right)=\mathbb{Z}^{h-1}$. If $k<i<n, \pi_{2}\left(\mathcal{F}_{2}^{i}(k, n)\right)=\mathbb{Z}^{3}$, while $\pi_{2}\left(\mathcal{F}_{2}^{n}(k, n)\right)=\mathbb{Z}^{2}$.

2 The first homotopy group of $\mathcal{F}_{h}^{i}(k, n)$

Let $\operatorname{Gr}(k, n)$ be the Grassmannian manifold parametrizing k-dimensional subspaces of $\mathbb{C}^{n}, 0<k<n$. In [MS] authors define the space $\mathcal{F}_{h}^{i}(k, n)$ as the ordered configuration space of all h distinct points H_{1}, \ldots, H_{h} in $\operatorname{Gr}(k, n)$ such that the dimension of the sum $\operatorname{dim}\left(H_{1}+\cdots+H_{h}\right)$ equals i.

Remark 2.1. The following easy facts hold:

1. if $h=1, \mathcal{F}_{h}^{i}(k, n)$ is empty except for $i=k$ and $\mathcal{F}_{1}^{k}(k, n)=\operatorname{Gr}(k, n)$;
2. if $i=1, \mathcal{F}_{h}^{i}(k, n)$ is empty except for $k, h=1$ and $\mathcal{F}_{1}^{1}(1, n)=G r(1, n)=$ $\mathbb{C P}^{n-1}$;
3. if $h \geq 2$ and $k=n-1$ then $\mathcal{F}_{h}^{i}(k, n)$ is empty except for $i=n$, and, since the sum of two (different) hyperplanes is $\mathbb{C}^{n}, \mathcal{F}_{h}^{n}(n-1, n)=$ $\mathcal{F}_{h}(G r(n-1, n))=\mathcal{F}_{h}\left(\mathbb{C P}^{n-1}\right) ;$
4. if $h \geq 2$ then $\mathcal{F}_{h}^{i}(k, n) \neq \emptyset$ if and only if $k+1 \leq i \leq \min (k h, n)$;
5. if $h \geq 2$ then $\mathcal{F}_{h}(G r(k, n))=\coprod_{i=k+1}^{\min (h k, n)} \mathcal{F}_{h}^{i}(k, n)$, with the open stratum given by the case of maximum dimension $i=\min (h k, n)$;
6. if $h \geq 2$ then the adjacency of the non-empty strata is given by

$$
\overline{\mathcal{F}_{h}^{i}(k, n)}=\mathcal{F}_{h}^{k+1}(k, n) \coprod \ldots \coprod \mathcal{F}_{h}^{i}(k, n)
$$

As the case $k=1$ has been treated in $[\mathrm{BP}]$ and, by the above remarks, the case $h=1$ is trivial, in this paper we will consider $h, k>1$ (and hence $i>k$).

In [MS], authors proved that $\mathcal{F}_{h}^{i}(k, n)$ is (when non empty) a complex submanifold of $G r(k, n)^{h}$ of dimension $i(n-i)+h k(i-k)$, and that if $i=\min (n, h k)$ and $n \neq h k$ then the open strata $\mathcal{F}_{h}^{i}(k, n)$ are simply connected except for $n=2$ (and $k=1$), i.e.

$$
\pi_{1}\left(\mathcal{F}_{h}^{\min (n, k h)}(k, n)\right)=\left\{\begin{array}{lr}
0 & \text { if } n \neq h k \tag{1}\\
\mathcal{P} \mathcal{B}_{h}\left(S^{2}\right) & \text { if } n=2, k=1
\end{array}\right.
$$

where $\mathcal{P B}_{h}\left(S^{2}\right)$ is the pure braid group on h strings of the sphere S^{2}.
In order to complete this result and compute fundamental groups in all cases we need two Lemmas.

Lemma 2.2. Let $V=\left(H_{1}, \ldots, H_{h}\right)$ be an element in the space $\mathcal{F}_{h}^{i}(k, n)$ and denote the sum $H_{1}+\cdots+H_{h} \in G r(i, n)$ by $\gamma(V)$, then the map

$$
\begin{equation*}
\gamma: \mathcal{F}_{h}^{i}(k, n) \rightarrow G r(i, n) \tag{2}
\end{equation*}
$$

is a locally trivial fibration with fiber $\mathcal{F}_{h}^{i}(k, i)$.

Proof. Let V_{0} be an element in the Grassmannian manifold $\operatorname{Gr}(i, n)$. Fix $L_{0} \in G r(n-i, n)$ such that $L_{0} \cap V_{0}=\{0\}$ and let $\varphi: \mathbb{C}^{n} \rightarrow V_{0}$ be the linear projection on V_{0} given by the direct sum decomposition $L_{0}+V_{0}=\mathbb{C}^{n}$. If $\mathcal{F}_{h}^{i}\left(k, V_{0}\right)$ is the ordered configuration space of h distinct k-dimensional spaces in V_{0} whose sum is an i-dimensional subspace, then $\mathcal{F}_{h}^{i}\left(k, V_{0}\right)$ coincides with $\mathcal{F}_{h}^{i}(k, i)$ when a basis in V_{0} is fixed.

Let $\mathcal{U}_{L_{0}}$ be the open neighborhood of V_{0} in $\operatorname{Gr}(i, n)$ defined as

$$
\mathcal{U}_{L_{0}}=\left\{V \in G r(i, n) \mid L_{0} \cap V=\{0\}\right\} .
$$

The restriction of the projection φ to an element V in $\mathcal{U}_{L_{0}}$ is a linear isomorphism $\varphi_{V}: V \rightarrow V_{0}$ and a local trivialization for γ is given by the homeomorphism

$$
\begin{aligned}
f: \gamma^{-1}\left(\mathcal{U}_{L_{0}}\right) & \rightarrow \mathcal{U}_{L_{0}} \times \mathcal{F}_{h}^{i}\left(k, V_{0}\right) \\
y=\left(H_{1}, \ldots, H_{h}\right) & \mapsto\left(\gamma(y),\left(\varphi_{\gamma(y)}\left(H_{1}\right), \ldots, \varphi_{\gamma(y)}\left(H_{h}\right)\right)\right)
\end{aligned}
$$

which makes the following diagram commute.

This completes the proof.

Lemma 2.3. The projection map on the first $h-1$ entries

$$
\begin{align*}
p r: \mathcal{F}_{h}^{k h}(k, n) & \rightarrow \mathcal{F}_{h-1}^{k(h-1)}(k, n) \tag{3}\\
\left(H_{1}, \ldots, H_{h}\right) & \mapsto\left(H_{1}, \ldots, H_{h-1}\right)
\end{align*}
$$

is a locally trivial fibration for any $n \geq k h$. Moreover, if $n=k h$, the fiber is $\mathbb{C}^{k(k h-k)}$.

Proof. Let V_{0} be an element in $\mathcal{F}_{h-1}^{k(h-1)}(k, n)$. Fix $L_{0} \in \operatorname{Gr}(n-k(h-1), n)$ such that $L_{0} \cap \gamma\left(V_{0}\right)=\{0\}$ and let $\varphi: \mathbb{C}^{n} \rightarrow \gamma\left(V_{0}\right)$ be the linear projection
on $\gamma\left(V_{0}\right)$ given by the direct sum decomposition $L_{0}+\gamma\left(V_{0}\right)=\mathbb{C}^{n}$. The fiber of the projection map $p r$ over V_{0} is the open set

$$
U_{\gamma\left(V_{0}\right)}=\left\{H \in G r(k, n) \mid H \cap \gamma\left(V_{0}\right)=\{0\}\right\} .
$$

Let $\mathcal{U}_{L_{0}}$ be the open neighborhood of V_{0} in $\mathcal{F}_{h-1}^{k(h-1)}(k, n)$ defined as

$$
\mathcal{U}_{L_{0}}=\left\{V \in \mathcal{F}_{h-1}^{k(h-1)}(k, n) \mid L_{0} \cap \gamma(V)=\{0\}\right\}
$$

If V is a point in $\mathcal{U}_{L_{0}}$, the restriction of the map φ to $\gamma(V)$ is a linear isomorphism $\tilde{\varphi}_{V}: \gamma(V) \rightarrow \gamma\left(V_{0}\right)$ that can be extended to an isomorphism φ_{V} of \mathbb{C}^{n} by requiring it to be the identity on L_{0}.
A local trivialization for the projection $p r$ is given by the homeomorphism

$$
\begin{aligned}
f: p r^{-1}\left(\mathcal{U}_{L_{0}}\right) & \rightarrow \mathcal{U}_{L_{0}} \times U_{\gamma\left(V_{0}\right)} \\
y=\left(H_{1}, \ldots, H_{h}\right) & \mapsto\left(p r(y), \varphi_{\gamma(p r(y))}\left(H_{h}\right)\right)
\end{aligned}
$$

which makes the following diagram commute.

Remark that if $n=k h$, then $U_{\gamma\left(V_{0}\right)}=\left\{H \in G r(k, n) \mid H+\gamma\left(V_{0}\right)=\mathbb{C}^{n}\right\}$ is a single coordinate chart of the Grassmannian manifold $\operatorname{Gr}(k, k h)$, that is it is homeomorphic to $\mathbb{C}^{k(k h-k)}$. This completes the proof.

Let us remark that if $V=\left(H_{1}, \ldots, H_{h}\right)$ is a point in the space $\mathcal{F}_{h}^{k h}(k, n)$, then the h subspaces H_{1}, \ldots, H_{h} are in direct sum and the map

$$
\begin{aligned}
p r: \mathcal{F}_{h}^{k h}(k, n) & \rightarrow \mathcal{F}_{h-1}^{k(h-1)}(k, n) \\
\left(H_{1}, \ldots, H_{h}\right) & \mapsto\left(H_{1}, \ldots, H_{h-1}\right)
\end{aligned}
$$

is well defined.
We have, from the homotopy long exact sequence of the fibration $p r$ with $n=k h$, that

$$
\begin{equation*}
\pi_{j}\left(\mathcal{F}_{h}^{k h}(k, k h)\right)=\pi_{j}\left(\mathcal{F}_{h-1}^{k(h-1)}(k, k h)\right) \tag{4}
\end{equation*}
$$

for all j and, by equation (1), that

$$
\pi_{1}\left(\mathcal{F}_{h}^{k h}(k, k h)\right)=\pi_{1}\left(\mathcal{F}_{h-1}^{k(h-1)}(k, k h)\right)=0
$$

It follows that the open stratum $\mathcal{F}_{h}^{k h}(k, k h)$ is simply connected, hence all open strata are simply connected.
Moreover, from the homotopy long exact sequence of the fibration γ, we have that

$$
\pi_{1}\left(\mathcal{F}_{h}^{i}(k, i)\right) \rightarrow \pi_{1}\left(\mathcal{F}_{h}^{i}(k, n)\right) \rightarrow \pi_{1}(G r(i, n))=0 .
$$

As $\mathcal{F}_{h}^{i}(k, i)$ is an open stratum, it is simply connected and hence $\pi_{1}\left(\mathcal{F}_{h}^{i}(k, n)\right)=$ 0.

That is, all our configuration spaces are simply connected and Theorem 1.1 is proved.

3 The second homotopy group

In this section we compute the second homotopy group $\pi_{2}\left(\mathcal{F}_{h}^{i}(k, n)\right)$ when $i=h k$, i.e. subspaces in direct sum, and when $h=2$, i.e. the case of two subspaces. In order to compute those homotopy groups, we need to know that the third homotopy group for Grassmannian manifolds is trivial if $k>1$. Even if it should be a classical result we didn't find references and we decided to give a proof here.

Let $V_{k, n}$ be the space parametrizing the (ordered) k-uples of orthonormal vectors in $\mathbb{C}^{n}, 1 \leq k \leq n$. It is an easy remark that $V_{1, n}=S^{2 n-1}$ and $V_{n, n}=U(n)$. It's well known that the function that maps an element of $V_{k, n}$ to the subspace generated by its entries is a locally trivial fibration:

$$
\begin{equation*}
V_{k, k} \hookrightarrow V_{k, n} \rightarrow G r(k, n)(k<n), \tag{5}
\end{equation*}
$$

while the projection on the last entry is the locally trivial fibration:

$$
\begin{equation*}
V_{k-1, n-1} \hookrightarrow V_{k, n} \rightarrow S^{2 n-1} \quad(k>1) \tag{6}
\end{equation*}
$$

Using the long exact sequence in homotopy induced by fibration (6), it's easy to see (crf. [St]) that $\pi_{1}\left(V_{k, n}\right)=\pi_{2}\left(V_{k, n}\right)=\pi_{3}\left(V_{k, n}\right)=0$, except for $\pi_{1}\left(V_{n, n}\right)=\pi_{3}\left(V_{n, n}\right)=\pi_{3}\left(V_{n-1, n}\right)=\mathbb{Z}$.

The exact sequence of homotopy groups associated to fibration (5) for $k<n-1$ then becomes

$$
\begin{aligned}
\mathbb{Z} \rightarrow 0 \rightarrow \pi_{3}(G r(k, n)) \rightarrow 0 \rightarrow 0 & \rightarrow \pi_{2}(G r(k, n)) \rightarrow \\
& \rightarrow \mathbb{Z} \rightarrow 0 \rightarrow \pi_{1}(G r(k, n)) \rightarrow 0
\end{aligned}
$$

that is $\pi_{1}(G r(k, n))=0, \pi_{2}(G r(k, n))=\mathbb{Z}$ and $\pi_{3}(G r(k, n))=0$ if $k<n-1$. If $k=n-1$ then $\operatorname{Gr}(n-1, n)=\mathbb{P}^{n-1}$ and $\pi_{3}(G r(n-1, n))=0$ except if $n=2$ in which case $\operatorname{Gr}(1,2)=S^{2}$ and $\pi_{3}(G r(1,2))=\mathbb{Z}$. That is the third homotopy group of the Grasmannian manifold $\operatorname{Gr}(k, n)$ is trivial if $k>1$.

Since the third homotopy group of the Grasmannian manifold $\operatorname{Gr}(k, n)$ is trivial if $k>1$ then for $i<n$ the homotopy long exact sequence of the fibration γ defined in equation (2) gives :

$$
0=\pi_{3}(G r(i, n)) \rightarrow \pi_{2}\left(\mathcal{F}_{h}^{i}(k, i)\right) \rightarrow \pi_{2}\left(\mathcal{F}_{h}^{i}(k, n)\right) \rightarrow \mathbb{Z}=\pi_{2}(G r(i, n)) \rightarrow 0
$$

As the second homotopy groups are abelian and the above short exact sequence splits, we have

$$
\pi_{2}\left(\mathcal{F}_{h}^{i}(k, n)\right)=\pi_{2}\left(\mathcal{F}_{h}^{i}(k, i)\right) \times \mathbb{Z}
$$

The case $i=h k$. If $i=h k$, by equation (4), $\pi_{2}\left(\mathcal{F}_{h}^{h k}(k, h k)\right)=\pi_{2}\left(\mathcal{F}_{h-1}^{k(h-1)}(k, h k)\right)$ and the following equalities hold:

$$
\begin{aligned}
\pi_{2}\left(\mathcal{F}_{h}^{h k}(k, h k)\right) & =\pi_{2}\left(\mathcal{F}_{h-1}^{k(h-1)}(k, k(h-1))\right) \times \mathbb{Z}= \\
& =\pi_{2}\left(\mathcal{F}_{h-2}^{k(h-2)}(k, k(h-1))\right) \times \mathbb{Z}= \\
& =\pi_{2}\left(\mathcal{F}_{h-2}^{k(h-2)}(k, k(h-2))\right) \times \mathbb{Z}^{2}= \\
& =\pi_{2}\left(\mathcal{F}_{2}^{2 k}(k, 2 k)\right) \times \mathbb{Z}^{h-2}= \\
& =\pi_{2}\left(\mathcal{F}_{1}^{k}(k, 2 k)\right) \times \mathbb{Z}^{h-2}= \\
& =\pi_{2}(G r(k, 2 k)) \times \mathbb{Z}^{h-2}= \\
& =\mathbb{Z}^{h-1}
\end{aligned}
$$

while, if $h k<n, \pi_{2}\left(\mathcal{F}_{h}^{h k}(k, n)\right)=\mathbb{Z}^{h}$.

The case $h=2$. If $h=2$ a point $\left(H_{1}, H_{2}\right)$ is in the space $\mathcal{F}_{2}^{i}(k, n)$ if and only if the dimension of intersection $\operatorname{dim}\left(H_{1} \cap H_{2}\right)=2 k-i$. If $i=2 k$ (which includes the cases $k=1$ and $n=2) H_{1}$ and H_{2} are in direct sum otherwise the following Lemma holds.

Lemma 3.1. If $k<i<2 k$, the map

$$
\begin{aligned}
\eta: \mathcal{F}_{2}^{i}(k, n) & \rightarrow G r(2 k-i, n) \\
\left(H_{1}, H_{2}\right) & \mapsto H_{1} \cap H_{2}
\end{aligned}
$$

is a locally trivial fibration with fiber $\mathcal{F}_{2}^{2 i-2 k}(i-k, n-2 k+i)$.
Proof. Let V_{0} be a point in the Grassmannian manifold $\operatorname{Gr}(2 k-i, n)$. Fix $L_{0} \in G r(n-2 k+i, n)$ such that $L_{0} \cap V_{0}=\{0\}$ and let $\varphi: \mathbb{C}^{n} \rightarrow V_{0}$ be the linear projection given by the direct sum decomposition $L_{0}+V_{0}=\mathbb{C}^{n}$.
The fiber $\eta^{-1}\left(V_{0}\right)$ is the set of all pairs $\left(H_{1}, H_{2}\right)$ of k-dimensional subspaces of \mathbb{C}^{n} such that $H_{1} \cap H_{2}=V_{0}$. That is, a pair $\left(H_{1}, H_{2}\right)$ is in $\eta^{-1}\left(V_{0}\right)$ if and only if it corresponds to a pair of $(i-k)$-dimensional subspaces of \mathbb{C}^{n} / V_{0} are in direct sum, i.e. a point in $\mathcal{F}_{2}^{2(i-k)}(i-k, n-2 k+i)$.

Let $\mathcal{U}_{L_{0}}$ be the open neighborhood of V_{0} in $\operatorname{Gr}(2 k-i, n)$, defined as

$$
\mathcal{U}_{L_{0}}=\left\{V \in G r(2 k-i, n) \mid L_{0} \cap V=\{0\}\right\} .
$$

If V is a point in $\mathcal{U}_{L_{0}}$, the restriction of φ to $\gamma(V)$ is a linear isomorphism $\tilde{\varphi}_{V}: V \rightarrow V_{0}$ that can be extended to an isomorphism φ_{V} of \mathbb{C}^{n} by requiring it to be the identity on L_{0}.

A local trivialization for η is the homeomorphism

$$
\begin{aligned}
f: \eta^{-1}\left(\mathcal{U}_{L_{0}}\right) & \rightarrow \mathcal{U}_{L_{0}} \times \eta^{-1}\left(V_{0}\right) \\
\left(H_{1}, H_{2}\right) & \mapsto\left(\eta(y),\left(\varphi_{\eta(y)}\left(H_{1}\right), \varphi_{\eta(y)}\left(H_{2}\right)\right)\right)
\end{aligned}
$$

This completes the proof.

By the homotopy long exact sequence of the map η, we get:

$$
0 \rightarrow \pi_{2}\left(\mathcal{F}_{2}^{2 i-2 k}(i-k, n-2 k+i)\right) \rightarrow \pi_{2}\left(\mathcal{F}_{2}^{i}(k, n)\right) \rightarrow \mathbb{Z} \rightarrow 0
$$

and hence $\pi_{2}\left(\mathcal{F}_{2}^{i}(k, n)\right)=\mathbb{Z} \times \pi_{2}\left(\mathcal{F}_{2}^{2(i-k)}(i-k, n-2 k+i)\right)$. By the previous case, $\pi_{2}\left(\mathcal{F}_{2}^{2(i-k)}(i-k, n-2 k+i)\right)$ is equal to \mathbb{Z} if $2(i-k)=n-2 k+i$, that is if $i=n$, and is equal to \mathbb{Z}^{2} otherwise. So, we get $\pi_{2}\left(\mathcal{F}_{2}^{n}(k, n)\right)=\mathbb{Z}^{2}$ and $\pi_{2}\left(\mathcal{F}_{2}^{i}(k, n)\right)=\mathbb{Z}^{3}$ if $i<n$.

References

[A] Artin, E. (1947), Theory of braids, Ann. of Math. (2)48, pp. 101-126.
[BP] Berceanu, B. and Parveen, S. (2012), Braid groups in complex projective spaces, Adv. Geom. 12, p.p. 269-286.
[B] Birman, Joan S. (1974), Braids, Links, and Mapping Class Groups, Annals of Mathematics vol. 82, Princeton University Press.
[F] Fadell, E.R, Husseini, S.Y. (2001), Geometry and Topology of Configuration Spaces, Springer Monographs in Mathematics, Springer-Verlarg Berlin.
[G] Garside, F.A. (1969), The braid groups and other groups, Quat. J. of Math. Oxford, 2^{e} ser. 20, 235-254.
[H] Hatcher, A. (2002), Algebraic Topology, Cambridge University Press.
[M1] Moran, S. (1983), The Mathematical Theory of Knots and Braids, North Holland Mathematics Studies, Vol 82 (Elsevier, Amsterdam).
[M2] Moulton, V. L. (1998), Vector Braids, J. Pure Appl. Algebra, 131, no. 3, 245-296.
[MPS] Manfredini, S., Parveen S. and Settepanella, S., Braid groups in complex spaces, to appear in BUMI, doi : 10.1007/s40574-014-0007-8 .
[MS] Manfredini, S. and Settepanella S. (2014), Braids in Complex Grassmannians, Ann. Fac. Sci. Toulouse, 23, no. 2, 353-359.
[St] Steenrod, N.E. (1951), The topology of fibre bundles, Princeton Univ. Press.

[^0]: *Department of Mathematics, University of Pisa. manfredi@dm.unipi.it
 ${ }^{\dagger}$ Department of Mathematics, Hokkaido University. s.settepanella@math.sci.hokudai.ac.jp

