

HOKKAIDO UNIVERSITY

Title	Braid groups in complex Grassmannians
Author(s)	Manfredini, Sandro; Settepanella, Simona
Citation	Topology and Its Applications, 176, 51-56 https://doi.org/10.1016/j.topol.2014.07.010
Issue Date	2014-10-01
Doc URL	http://hdl.handle.net/2115/57332
Rights	(C) 2014 Elsevier B.V. All rights reserved.
Туре	article (author version)
File Information	TA_176_51pdf

Braid groups in complex Grassmannians

Sandro Manfredini^{*} Simona Settepanella[†]

July 17, 2014

Abstract

We describe the fundamental group and second homotopy group of ordered k-point sets in Gr(k, n) generating a subspace of fixed dimension.

Keywords:

complex space, configuration spaces, braid groups.

MSC (2010): 20F36, 52C35, 57M05, 51A20.

1 Introduction

Let M be a manifold and Σ_h be the symmetric group on h elements. The ordered and unordered configuration spaces of h distinct points in M, $\mathcal{F}_h(M) = \{(x_1, \ldots, x_h) \in M^h | x_i \neq x_j, i \neq j\}$ and $\mathcal{C}_h(M) = \mathcal{F}_h(M)/\Sigma_h$, have been widely studied. In recent papers ([BP, MPS, MS]), new configuration spaces were introduced when M is, respectively, the projective space \mathbb{CP}^n , the affine space \mathbb{C}^n and the Grassmannian manifold Gr(k, n) of kdimensional subspaces of \mathbb{C}^n , by stratifying the configuration spaces $\mathcal{F}_h(M)$ (resp. $\mathcal{C}_h(M)$) with complex submanifolds $\mathcal{F}_h^i(M)$ (resp. $\mathcal{C}_h^i(M)$) defined as the ordered (resp. unordered) configuration spaces of all h points in M

^{*}Department of Mathematics, University of Pisa. manfredi@dm.unipi.it

[†]Department of Mathematics, Hokkaido University. s.settepanella@math.sci.hokudai.ac.jp

generating a subspace of dimension i. The homotopy groups of those configuration spaces are interesting as they are strongly related to the homotopy groups of the Grassmannian manifolds, i.e. of spheres.

In [BP] (resp. [MPS]), the fundamental groups $\pi_1(\mathcal{F}_h^i(\mathbb{CP}^n))$ and $\pi_1(\mathcal{C}_h^i(\mathbb{CP}^n))$ (resp. $\pi_1(\mathcal{F}_h^i(\mathbb{C}^n))$) and $\pi_1(\mathcal{C}_h^i(\mathbb{C}^n))$) are computed, proving that the former are trivial and the latter are isomorphic to the symmetric group Σ_h except when i = 1 (resp. i = 1 and i = n = h - 1) providing, in this last case, a presentation for both $\pi_1(\mathcal{F}_h^1(\mathbb{CP}^n))$ and $\pi_1(\mathcal{C}_h^1(\mathbb{CP}^n))$ (resp. $\pi_1(\mathcal{F}_h^i(\mathbb{C}^n))$) and $\pi_1(\mathcal{C}_h^i(\mathbb{C}^n))$) which is similar to those of the braid groups of the sphere.

In this paper we generalize the results obtained in [BP] when M is the projective space $\mathbb{CP}^{n-1} = Gr(1, n)$, to the case of Grassmannian manifold Gr(k, n)of k-dimensional subspaces of \mathbb{C}^n . We prove that if $\mathcal{F}_h^i(k, n)$ is the *i*-th ordered configuration space of all distinct points H_1, \ldots, H_h in the Grassmannian manifold Gr(k, n) whose sum is a subspace of dimension *i*, then the following result holds.

Theorem 1.1. The non-empty ordered configuration spaces $\mathcal{F}_{h}^{i}(k, n)$ are all simply connected if k > 1.

From this, we immediately obtain that the fundamental group of the *i*-th unordered configuration space $\mathcal{F}_h^i(k,n)/\Sigma_h$ is isomorphic to Σ_h .

These results are stated in Section 2. In Section 3 we compute the second homotopy group of the i-th configuration spaces in two special cases: the case in which the subspaces are in direct sum and the case of two subspaces.

Theorem 1.2. If hk < n, $\pi_2(\mathcal{F}_h^{hk}(k,n)) = \mathbb{Z}^h$, while $\pi_2(\mathcal{F}_h^{hk}(k,hk)) = \mathbb{Z}^{h-1}$. If k < i < n, $\pi_2(\mathcal{F}_2^i(k,n)) = \mathbb{Z}^3$, while $\pi_2(\mathcal{F}_2^n(k,n)) = \mathbb{Z}^2$.

2 The first homotopy group of $\mathcal{F}_h^i(k, n)$

Let Gr(k, n) be the Grassmannian manifold parametrizing k-dimensional subspaces of \mathbb{C}^n , 0 < k < n. In [MS] authors define the space $\mathcal{F}_h^i(k, n)$ as the ordered configuration space of all h distinct points H_1, \ldots, H_h in Gr(k, n)such that the dimension of the sum $\dim(H_1 + \cdots + H_h)$ equals i.

Remark 2.1. The following easy facts hold:

1. if
$$h = 1$$
, $\mathcal{F}_h^i(k, n)$ is empty except for $i = k$ and $\mathcal{F}_1^k(k, n) = Gr(k, n)$;

- 2. if i = 1, $\mathcal{F}_h^i(k, n)$ is empty except for k, h = 1 and $\mathcal{F}_1^1(1, n) = Gr(1, n) = \mathbb{CP}^{n-1}$;
- 3. if $h \ge 2$ and k = n 1 then $\mathcal{F}_h^i(k, n)$ is empty except for i = n, and, since the sum of two (different) hyperplanes is \mathbb{C}^n , $\mathcal{F}_h^n(n - 1, n) = \mathcal{F}_h(Gr(n - 1, n)) = \mathcal{F}_h(\mathbb{CP}^{n-1});$
- 4. if $h \ge 2$ then $\mathcal{F}_h^i(k, n) \neq \emptyset$ if and only if $k + 1 \le i \le \min(kh, n)$;
- 5. if $h \ge 2$ then $\mathcal{F}_h(Gr(k,n)) = \coprod_{i=k+1}^{\min(hk,n)} \mathcal{F}_h^i(k,n)$, with the open stratum given by the case of maximum dimension $i = \min(hk, n)$;
- 6. if $h \ge 2$ then the adjacency of the non-empty strata is given by

$$\overline{\mathcal{F}_h^i(k,n)} = \mathcal{F}_h^{k+1}(k,n) \coprod \dots \coprod \mathcal{F}_h^i(k,n).$$

As the case k = 1 has been treated in [BP] and, by the above remarks, the case h = 1 is trivial, in this paper we will consider h, k > 1 (and hence i > k).

In [MS], authors proved that $\mathcal{F}_{h}^{i}(k,n)$ is (when non empty) a complex submanifold of $Gr(k,n)^{h}$ of dimension i(n-i) + hk(i-k), and that if $i = \min(n,hk)$ and $n \neq hk$ then the open strata $\mathcal{F}_{h}^{i}(k,n)$ are simply connected except for n = 2 (and k = 1), i.e.

$$\pi_1(\mathcal{F}_h^{\min(n,kh)}(k,n)) = \begin{cases} 0 & \text{if } n \neq hk\\ \mathcal{PB}_h(S^2) & \text{if } n = 2, \ k = 1 \end{cases}$$
(1)

where $\mathcal{PB}_h(S^2)$ is the pure braid group on h strings of the sphere S^2 .

In order to complete this result and compute fundamental groups in all cases we need two Lemmas.

Lemma 2.2. Let $V = (H_1, \ldots, H_h)$ be an element in the space $\mathcal{F}_h^i(k, n)$ and denote the sum $H_1 + \cdots + H_h \in Gr(i, n)$ by $\gamma(V)$, then the map

$$\gamma: \mathcal{F}_h^i(k, n) \to Gr(i, n) \tag{2}$$

is a locally trivial fibration with fiber $\mathcal{F}_h^i(k,i)$.

Proof. Let V_0 be an element in the Grassmannian manifold Gr(i, n). Fix $L_0 \in Gr(n-i, n)$ such that $L_0 \cap V_0 = \{0\}$ and let $\varphi : \mathbb{C}^n \to V_0$ be the linear projection on V_0 given by the direct sum decomposition $L_0 + V_0 = \mathbb{C}^n$. If $\mathcal{F}_h^i(k, V_0)$ is the ordered configuration space of h distinct k-dimensional spaces in V_0 whose sum is an *i*-dimensional subspace, then $\mathcal{F}_h^i(k, V_0)$ coincides with $\mathcal{F}_h^i(k, i)$ when a basis in V_0 is fixed.

Let \mathcal{U}_{L_0} be the open neighborhood of V_0 in Gr(i, n) defined as

$$\mathcal{U}_{L_0} = \{ V \in Gr(i, n) | L_0 \cap V = \{0\} \}.$$

The restriction of the projection φ to an element V in \mathcal{U}_{L_0} is a linear isomorphism $\varphi_V : V \to V_0$ and a local trivialization for γ is given by the homeomorphism

$$f: \gamma^{-1}(\mathcal{U}_{L_0}) \to \mathcal{U}_{L_0} \times \mathcal{F}_h^i(k, V_0)$$
$$y = (H_1, \dots, H_h) \mapsto \left(\gamma(y), (\varphi_{\gamma(y)}(H_1), \dots, \varphi_{\gamma(y)}(H_h))\right)$$

which makes the following diagram commute.

This completes the proof.

Lemma 2.3. The projection map on the first h - 1 entries

$$pr: \mathcal{F}_{h}^{kh}(k,n) \to \mathcal{F}_{h-1}^{k(h-1)}(k,n)$$

$$(H_{1},\ldots,H_{h}) \mapsto (H_{1},\ldots,H_{h-1})$$
(3)

is a locally trivial fibration for any $n \ge kh$. Moreover, if n = kh, the fiber is $\mathbb{C}^{k(kh-k)}$.

Proof. Let V_0 be an element in $\mathcal{F}_{h-1}^{k(h-1)}(k,n)$. Fix $L_0 \in Gr(n-k(h-1),n)$ such that $L_0 \cap \gamma(V_0) = \{0\}$ and let $\varphi : \mathbb{C}^n \to \gamma(V_0)$ be the linear projection

on $\gamma(V_0)$ given by the direct sum decomposition $L_0 + \gamma(V_0) = \mathbb{C}^n$. The fiber of the projection map pr over V_0 is the open set

$$U_{\gamma(V_0)} = \{ H \in Gr(k, n) | H \cap \gamma(V_0) = \{ 0 \} \}.$$

Let \mathcal{U}_{L_0} be the open neighborhood of V_0 in $\mathcal{F}_{h-1}^{k(h-1)}(k,n)$ defined as

$$\mathcal{U}_{L_0} = \{ V \in \mathcal{F}_{h-1}^{k(h-1)}(k,n) | L_0 \cap \gamma(V) = \{0\} \}.$$

If V is a point in \mathcal{U}_{L_0} , the restriction of the map φ to $\gamma(V)$ is a linear isomorphism $\tilde{\varphi}_V : \gamma(V) \to \gamma(V_0)$ that can be extended to an isomorphism φ_V of \mathbb{C}^n by requiring it to be the identity on L_0 .

A local trivialization for the projection pr is given by the homeomorphism

$$f: pr^{-1}(\mathcal{U}_{L_0}) \to \mathcal{U}_{L_0} \times U_{\gamma(V_0)}$$
$$y = (H_1, \dots, H_h) \mapsto (pr(y), \varphi_{\gamma(pr(y))}(H_h))$$

which makes the following diagram commute.

Remark that if n = kh, then $U_{\gamma(V_0)} = \{H \in Gr(k, n) | H + \gamma(V_0) = \mathbb{C}^n\}$ is a single coordinate chart of the Grassmannian manifold Gr(k, kh), that is it is homeomorphic to $\mathbb{C}^{k(kh-k)}$. This completes the proof.

Let us remark that if $V = (H_1, \ldots, H_h)$ is a point in the space $\mathcal{F}_h^{kh}(k, n)$, then the *h* subspaces H_1, \ldots, H_h are in direct sum and the map

$$pr: \mathcal{F}_h^{kh}(k,n) \to \mathcal{F}_{h-1}^{k(h-1)}(k,n)$$
$$(H_1,\ldots,H_h) \mapsto (H_1,\ldots,H_{h-1})$$

is well defined.

We have, from the homotopy long exact sequence of the fibration pr with n = kh, that

$$\pi_j(\mathcal{F}_h^{kh}(k,kh)) = \pi_j(\mathcal{F}_{h-1}^{k(h-1)}(k,kh))$$
(4)

for all j and, by equation (1), that

$$\pi_1(\mathcal{F}_h^{kh}(k,kh)) = \pi_1(\mathcal{F}_{h-1}^{k(h-1)}(k,kh)) = 0.$$

It follows that the open stratum $\mathcal{F}_{h}^{kh}(k,kh)$ is simply connected, hence all open strata are simply connected.

Moreover, from the homotopy long exact sequence of the fibration γ , we have that

$$\pi_1(\mathcal{F}_h^i(k,i)) \to \pi_1(\mathcal{F}_h^i(k,n)) \to \pi_1(Gr(i,n)) = 0.$$

As $\mathcal{F}_h^i(k,i)$ is an open stratum, it is simply connected and hence $\pi_1(\mathcal{F}_h^i(k,n)) = 0$.

That is, all our configuration spaces are simply connected and Theorem 1.1 is proved.

3 The second homotopy group

In this section we compute the second homotopy group $\pi_2(\mathcal{F}_h^i(k,n))$ when i = hk, i.e. subspaces in direct sum, and when h = 2, i.e. the case of two subspaces. In order to compute those homotopy groups, we need to know that the third homotopy group for Grassmannian manifolds is trivial if k > 1. Even if it should be a classical result we didn't find references and we decided to give a proof here.

Let $V_{k,n}$ be the space parametrizing the (ordered) k-uples of orthonormal vectors in \mathbb{C}^n , $1 \leq k \leq n$. It is an easy remark that $V_{1,n} = S^{2n-1}$ and $V_{n,n} = U(n)$. It's well known that the function that maps an element of $V_{k,n}$ to the subspace generated by its entries is a locally trivial fibration:

$$V_{k,k} \hookrightarrow V_{k,n} \to Gr(k,n) \quad (k < n), \tag{5}$$

while the projection on the last entry is the locally trivial fibration:

$$V_{k-1,n-1} \hookrightarrow V_{k,n} \to S^{2n-1} \quad (k>1). \tag{6}$$

Using the long exact sequence in homotopy induced by fibration (6), it's easy to see (crf. [St]) that $\pi_1(V_{k,n}) = \pi_2(V_{k,n}) = \pi_3(V_{k,n}) = 0$, except for $\pi_1(V_{n,n}) = \pi_3(V_{n,n}) = \pi_3(V_{n-1,n}) = \mathbb{Z}$.

The exact sequence of homotopy groups associated to fibration (5) for k < n-1 then becomes

$$\mathbb{Z} \to 0 \to \pi_3(Gr(k,n)) \to 0 \to 0 \to \pi_2(Gr(k,n)) \to \\ \to \mathbb{Z} \to 0 \to \pi_1(Gr(k,n)) \to 0$$

that is $\pi_1(Gr(k,n)) = 0$, $\pi_2(Gr(k,n)) = \mathbb{Z}$ and $\pi_3(Gr(k,n)) = 0$ if k < n-1. If k = n-1 then $Gr(n-1,n) = \mathbb{P}^{n-1}$ and $\pi_3(Gr(n-1,n)) = 0$ except if n = 2 in which case $Gr(1,2) = S^2$ and $\pi_3(Gr(1,2)) = \mathbb{Z}$. That is the third homotopy group of the Grasmannian manifold Gr(k,n) is trivial if k > 1.

Since the third homotopy group of the Grasmannian manifold Gr(k, n) is trivial if k > 1 then for i < n the homotopy long exact sequence of the fibration γ defined in equation (2) gives :

$$0 = \pi_3(Gr(i,n)) \to \pi_2(\mathcal{F}_h^i(k,i)) \to \pi_2(\mathcal{F}_h^i(k,n)) \to \mathbb{Z} = \pi_2(Gr(i,n)) \to 0.$$

As the second homotopy groups are abelian and the above short exact sequence splits, we have

$$\pi_2(\mathcal{F}_h^i(k,n)) = \pi_2(\mathcal{F}_h^i(k,i)) \times \mathbb{Z}.$$

The case i = hk. If i = hk, by equation (4), $\pi_2(\mathcal{F}_h^{hk}(k, hk)) = \pi_2(\mathcal{F}_{h-1}^{k(h-1)}(k, hk))$ and the following equalities hold:

$$\begin{aligned} \pi_2(\mathcal{F}_h^{hk}(k,hk)) &= & \pi_2(\mathcal{F}_{h-1}^{k(h-1)}(k,k(h-1))) \times \mathbb{Z} = \\ &= & \pi_2(\mathcal{F}_{h-2}^{k(h-2)}(k,k(h-1))) \times \mathbb{Z} = \\ &= & \pi_2(\mathcal{F}_{h-2}^{k(h-2)}(k,k(h-2))) \times \mathbb{Z}^2 = \\ &= & \pi_2(\mathcal{F}_2^{2k}(k,2k)) \times \mathbb{Z}^{h-2} = \\ &= & \pi_2(\mathcal{F}_1^k(k,2k)) \times \mathbb{Z}^{h-2} = \\ &= & \pi_2(Gr(k,2k)) \times \mathbb{Z}^{h-2} = \\ &= & \mathbb{Z}^{h-1} \end{aligned}$$

while, if hk < n, $\pi_2(\mathcal{F}_h^{hk}(k, n)) = \mathbb{Z}^h$.

The case h = 2. If h = 2 a point (H_1, H_2) is in the space $\mathcal{F}_2^i(k, n)$ if and only if the dimension of intersection $\dim(H_1 \cap H_2) = 2k - i$. If i = 2k (which includes the cases k = 1 and n = 2) H_1 and H_2 are in direct sum otherwise the following Lemma holds.

Lemma 3.1. If k < i < 2k, the map

$$\eta: \mathcal{F}_2^i(k,n) \to Gr(2k-i,n)$$
$$(H_1,H_2) \mapsto H_1 \cap H_2$$

is a locally trivial fibration with fiber $\mathcal{F}_2^{2i-2k}(i-k,n-2k+i)$.

Proof. Let V_0 be a point in the Grassmannian manifold Gr(2k - i, n). Fix $L_0 \in Gr(n - 2k + i, n)$ such that $L_0 \cap V_0 = \{0\}$ and let $\varphi : \mathbb{C}^n \to V_0$ be the linear projection given by the direct sum decomposition $L_0 + V_0 = \mathbb{C}^n$.

The fiber $\eta^{-1}(V_0)$ is the set of all pairs (H_1, H_2) of k-dimensional subspaces of \mathbb{C}^n such that $H_1 \cap H_2 = V_0$. That is, a pair (H_1, H_2) is in $\eta^{-1}(V_0)$ if and only if it corresponds to a pair of (i - k)-dimensional subspaces of \mathbb{C}^n/V_0 are in direct sum, i.e. a point in $\mathcal{F}_2^{2(i-k)}(i-k, n-2k+i)$.

Let \mathcal{U}_{L_0} be the open neighborhood of V_0 in Gr(2k-i, n), defined as

$$\mathcal{U}_{L_0} = \{ V \in Gr(2k - i, n) | L_0 \cap V = \{0\} \}.$$

If V is a point in \mathcal{U}_{L_0} , the restriction of φ to $\gamma(V)$ is a linear isomorphism $\tilde{\varphi}_V : V \to V_0$ that can be extended to an isomorphism φ_V of \mathbb{C}^n by requiring it to be the identity on L_0 .

A local trivialization for η is the homeomorphism

$$f: \eta^{-1}(\mathcal{U}_{L_0}) \to \mathcal{U}_{L_0} \times \eta^{-1}(V_0)$$
$$(H_1, H_2) \mapsto \left(\eta(y), (\varphi_{\eta(y)}(H_1), \varphi_{\eta(y)}(H_2))\right)$$

This completes the proof.

By the homotopy long exact sequence of the map η , we get:

$$0 \to \pi_2(\mathcal{F}_2^{2i-2k}(i-k,n-2k+i)) \to \pi_2(\mathcal{F}_2^i(k,n)) \to \mathbb{Z} \to 0$$

and hence $\pi_2(\mathcal{F}_2^i(k,n)) = \mathbb{Z} \times \pi_2(\mathcal{F}_2^{2(i-k)}(i-k,n-2k+i))$. By the previous case, $\pi_2(\mathcal{F}_2^{2(i-k)}(i-k,n-2k+i))$ is equal to \mathbb{Z} if 2(i-k) = n-2k+i, that is if i = n, and is equal to \mathbb{Z}^2 otherwise. So, we get $\pi_2(\mathcal{F}_2^n(k,n)) = \mathbb{Z}^2$ and $\pi_2(\mathcal{F}_2^i(k,n)) = \mathbb{Z}^3$ if i < n.

References

- [A] Artin, E. (1947), Theory of braids, Ann. of Math. (2)48, pp. 101-126.
- [BP] Berceanu, B. and Parveen, S. (2012), Braid groups in complex projective spaces, Adv. Geom. 12, p.p. 269 - 286.
- [B] Birman, Joan S. (1974), Braids, Links, and Mapping Class Groups, Annals of Mathematics vol. 82, Princeton University Press.
- [F] Fadell, E.R, Husseini, S.Y. (2001), Geometry and Topology of Configuration Spaces, Springer Monographs in Mathematics, Springer-Verlarg Berlin.
- [G] Garside, F.A. (1969), The braid groups and other groups, Quat. J. of Math. Oxford, 2^e ser. 20, 235-254.
- [H] Hatcher, A. (2002), Algebraic Topology, Cambridge University Press.
- [M1] Moran, S. (1983), *The Mathematical Theory of Knots and Braids*, North Holland Mathematics Studies, Vol 82 (Elsevier, Amsterdam).
- [M2] Moulton, V. L. (1998), Vector Braids, J. Pure Appl. Algebra, 131, no. 3, 245-296.
- [MPS] Manfredini, S., Parveen S. and Settepanella, S., *Braid groups in com*plex spaces, to appear in BUMI, doi : 10.1007/s40574-014-0007-8.
- [MS] Manfredini, S. and Settepanella S. (2014), Braids in Complex Grassmannians, Ann. Fac. Sci. Toulouse, 23, no. 2, 353-359.
- [St] Steenrod, N.E. (1951), *The topology of fibre bundles*, Princeton Univ. Press.