3,110,139 research outputs found

    A review of digital forensics methods for JPEG file carving

    Get PDF
    Digital forensics is an important field of cybersecurity and digital crimes investigation. It entails applying file recovery methods to analyze data from storage media and extract hidden, deleted or overwritten files. The recovery process might have accompanied with cases of unallocated partitions of blocks or clusters and the absence of file system metadata. These cases entail advance recovery methods that have carving abilities. The file carving methods include different types of techniques to identify, validate and reassemble the file. This paper presents a comprehensive study of data recovery, file carving, and file reassembling. It focuses on identifying and recovering JPEG Images as it is a wildly covered in the literature. It classifies the carving techniques into three types: signature-, structure-, and content-based carvers. Subsequently, the paper reviews seven advanced carving methods in the literature. Finally, the paper presents a number of research gaps and conclude a number of possible improvements. Generally, both the gaps and possible improvements are associated with the fragmentation problem of data files

    Comparing Methods for Interpolation to Improve Raster Digital Elevation Models

    Get PDF
    Digital elevation models (DEMs) are available as raster files at 100m, 30m, and 10m resolutions for the contiguous United States and are used in a variety of geographic analyses. Some projects may require a finer resolution. GIS software offers many options for interpolating data to higher resolutions. We compared ten interpolation methods using 10m sample data from the Ouachita Mountains in central Arkansas. We interpolated the 10m DEM to 5m, 2.5m, and 1m resolutions and compared the absolute mean difference (AMD) for each using surveyed control points. Overall, there was little difference in the accuracy between interpolation methods at the resolutions tested and minimal departure from the original 10m raster

    Aircraft digital control design methods

    Get PDF
    Variations in design methods for aircraft digital flight control are evaluated and compared. The methods fall into two categories; those where the design is done in the continuous domain (or s plane) and those where the design is done in the discrete domain (or z plane). Design method fidelity is evaluated by examining closed loop root movement and the frequency response of the discretely controlled continuous aircraft. It was found that all methods provided acceptable performance for sample rates greater than 10 cps except the uncompensated s plane design method which was acceptable above 20 cps. A design procedure based on optimal control methods was proposed that provided the best fidelity at very slow sample rates and required no design iterations for changing sample rates

    Error correcting method and apparatus Patent

    Get PDF
    Description of error correcting methods for use with digital data computers and apparatus for encoding and decoding digital dat

    Backward Diffusion Methods for Digital Halftoning

    Get PDF
    We examine using discrete backward diffusion to produce digital halftones. The noise introduced by the discrete approximation to backwards diffusion forces the intensity away from uniform values, so that rounding each pixel to black or white can produce a pleasing halftone. We formulate our method by considering the Human Visual System norm and approximating the inverse of the blurring operator. We also investigate several possible mobility functions for use in a nonlinear backward diffusion equation for higher quality results

    Two improved methods for testing ADC parametric faults by digital input signals

    Get PDF
    In this paper, two improved methods are presented extending our previous work. The first one improves the results by adjusting the voltage levels of the input pulse wave stimulus. Compared with the sine wave input stimulus, the four-level pulse wave can detect even more faulty cases with the offset faults. The second one improves the results by calculating the similarity of the output spectra between the golden devices and the DUTs. Compared with the previous method [10], it is less sensitive to the jitter and the change of the rise/fall time of the input pulse wave stimulus. In these two methods, a number of golden devices are tested at first to obtain the fault-free range. At last, a signature result is obtained from both methods. It can filter out the faulty devices in a quick way before testing the specific values of the conventional dynamic and static parameters

    Numerical methods for coupled reconstruction and registration in digital breast tomosynthesis.

    Get PDF
    Digital Breast Tomosynthesis (DBT) provides an insight into the fine details of normal fibroglandular tissues and abnormal lesions by reconstructing a pseudo-3D image of the breast. In this respect, DBT overcomes a major limitation of conventional X-ray mam- mography by reducing the confounding effects caused by the superposition of breast tissue. In a breast cancer screening or diagnostic context, a radiologist is interested in detecting change, which might be indicative of malignant disease. To help automate this task image registration is required to establish spatial correspondence between time points. Typically, images, such as MRI or CT, are first reconstructed and then registered. This approach can be effective if reconstructing using a complete set of data. However, for ill-posed, limited-angle problems such as DBT, estimating the deformation is com- plicated by the significant artefacts associated with the reconstruction, leading to severe inaccuracies in the registration. This paper presents a mathematical framework, which couples the two tasks and jointly estimates both image intensities and the parameters of a transformation. Under this framework, we compare an iterative method and a simultaneous method, both of which tackle the problem of comparing DBT data by combining reconstruction of a pair of temporal volumes with their registration. We evaluate our methods using various computational digital phantoms, uncom- pressed breast MR images, and in-vivo DBT simulations. Firstly, we compare both iter- ative and simultaneous methods to the conventional, sequential method using an affine transformation model. We show that jointly estimating image intensities and parametric transformations gives superior results with respect to reconstruction fidelity and regis- tration accuracy. Also, we incorporate a non-rigid B-spline transformation model into our simultaneous method. The results demonstrate a visually plausible recovery of the deformation with preservation of the reconstruction fidelity
    corecore