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Abstract

Digital elevation models (DEMs) are available as
raster files at 100m, 30m, and 10m resolutions for the
contiguous United States and are used in a variety of
geographic analyses. Some projects may require a finer
resolution. GIS software offers many options for
interpolating data to higher resolutions. We compared
ten interpolation methods using 10m sample data from
the Ouachita Mountains in central Arkansas. We
interpolated the 10m DEM to 5m, 2.5m, and 1m
resolutions and compared the absolute mean difference
(AMD) for each using surveyed control points.
Overall, there was little difference in the accuracy
between interpolation methods at the resolutions tested
and minimal departure from the original 10m raster.

Introduction

Raster-based digital elevation models (DEMs) are
an important data source used in a variety of spatial
analyses. DEMs can be used to derive products such
as slope (Weih and Mattson 2004), stream networks
(O’Callaghan and Mark 1984), line-of-sight, hillshade,
and irradiance maps (Burrough and McDonnel 1998),
soil models (Thompson et al. 2001) and measures of
terrain ruggedness (Sappington et al. 2007). The
quality of these products depends on the quality and
resolution of the source DEM. In a sensitivity analysis
of stormwater runoff models, Cho and Lee (2001)
found that runoff increased with increasing DEM
resolution. Wu et al. (2008) found that mean
topographic index values for a watershed increased
with increasing grid cell size. Thompson et al. (2001)
found the values of slope and several other DEM-
derived data to depend on the horizontal and vertical
resolution of the source DEM, as did the adjusted R2

value for their soil model. Clearly, the resolution of
raster DEMs has an impact on the quality of derived
products (Figure 1).

DEMs are commonly available at 100m, 30m, and
10m horizontal resolutions, but some analyses may
benefit from higher resolutions, especially when trying

to model landforms that are smaller or narrower than
the horizontal resolution of the raster DEM. The
United States Geological Survey also has 3m data
available in some areas as part of the national elevation
dataset (NED), but most areas of the US do not have
resolutions higher than 10m available (Gesch et al.
2009).

Figure 1. Comparison of original 10m DEM (left) and 1m DEM
interpolated using a local polynomial function (right) Note the
finer details that can be discerned in the interpolated DEM.

The ideal solution would be to collect data at a
higher resolution, but this is typically limited by cost
and manpower. An alternative approach is to use
interpolation to estimate the elevation values at a
higher resolution. Conceptually, the process is the
same as “enhancing” the resolution of a digital
photograph to produce a clearer image. There are
many interpolation methods available (Burrough and
McDonnel 1998, Yang and Hodler 2000, Aguilar et al.
2005), but the methods we reviewed fall into four
general types: inverse distance weighted, radial basis
functions, local polynomials, and kriging. There has
been extensive literature published that compared the
performance of these interpolators using scattered data
(Weber and Englund 1992, 1994, DeClercq 1996,
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Yang and Hodler 2000, Aguilar et al. 2005). However,
little attention has been paid to their performance on
interpolating the regularly spaced data of an existing
raster DEM to a finer resolution.

Inverse distance weighted (IDW) interpolation
assumes that the values of a variable of interest, such
as elevation, are more influenced by values at nearby
locations than those at distant locations (Burrough and
McDonnel 1998, Aguilar et al. 2005). It models the
value Z at point x0 using the expression:

(1)

where w(di) is a weight function, z(xi) is the elevation
at known point xi, and di is the distance between xi and
x0. Since ∞ as , the weight function
can be expressed as . Increasing values of u
decreases the weight of more distant points and creates
a more localized interpolation.

The radial basis functions are a family of
interpolators that model unknown values by calculating
a set of localized linear equations using basis functions
(Yang and Hodler 2000, Aguilar et al. 2005). They are
represented as:

(2)

where Ψ(dj) is the radial basis function of the distance
dj from each sample location and point x, fi(x) is a trend
function, and ai and bj are coefficients calculated
separately. Radial basis functions include
multiquadric, inverse multiquadric, spline functions,
and others.

Polynomial functions attempt to use polynomial
equations to fit a surface through source data points.
Each additional degree of polynomial allows for bends
in an additional dimension, but also increases model
instability. Global polynomials attempt to fit a
polynomial through all of the source data, whereas
local polynomials fit a series of polynomials, each
considering only the data within an area that overlaps
its neighbors. The localized approach allows the
model to capture more detail than the globalized
approach, while using a lower-order, more stable
polynomial.

The last interpolation method we explored is
kriging. Kriging is a robust geostatistical method that
uses regionalized variable theory to determine the
parameters of the interpolation (Oliver and Webster
1990, DeMers 1997, Burrough and McDonnell 1998).
As with IDW, kriging assumes that points that are

close are more similar than those that are far away.
Kriging takes the extra step of quantifying the
relationship between difference in values and distance
between points. This is accomplished with the use of a
variogram, where the semivariance, γ(h), or one-half of
the difference between values at two points, is plotted
as a function of the distance, or lag, h, between these
points. Using the semivariance function, the value of a
variable Z at point x is considered as:

′′ (3)

where m(x) is a function of the overall surface trend,
γ(h) accounts for the spatially correlated deviations
from this trend, and ε′′ is the “noise” or residual of the
measurements. Taken together, these components
account for all sources of variation in the values of Z
between points.

There are several forms of kriging, including
ordinary kriging, where no assumptions are made
regarding the overall trend or mean and simple kriging,
which assumes a known mean value for all points.
Universal kriging assumes an overall directional trend
in the data. It is also possible to use additional
variables to predict the values of the primary variable,
using a process called co-kriging (Oliver and Webster
1990, Burrough and McDonnell 1998). The method of
kriging that we tested was ordinary kriging, as the
other forms were not appropriate for our elevation data.

Interpolation by ordinary kriging takes the form of:

(4)

where is the predicted value of z at point xo, λi is
a weight function for point xi, with values of λi are
chosen to eliminate bias in and so that

. Z(xi) is a function of the known values at n sampled
points, xi.

Materials and Methods

The study site is an area of approximately 360km2

in the eastern Ouachita Mountains in Garland, Perry,
and Saline counties in Arkansas (Figure 2). Elevations
range from 149m to 577m above sea level. The area
was selected to encompass a set of surveyed control
points collected by Weih (2010).

We downloaded 10m DEM data for the study area
from the NED in December 2011 (Gesch 2007, Gesch
et al. 2002), and reprojected the data from GCS NAD
83 to UTM Zone 15N projection, NAD 83 using
ArcMap 10.0 (Environmental Systems Research
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Table 1. Comparison of absolute mean difference (AMD) values and elevation ranges among the original 10m DEM,
inverse distance weighted (IDW), inverse multiquadric (IMQF), ordinary kriging (OK), first and second order local
polynomial, multiquadric (MQF), completely regularized spline (CRS), spline with tension (TNSP), and thin plate
spline (TPS) interpolations at 1m, 2.5m, and 5m. Minimum and maximum elevations of each DEM are also reported.

Method Resolution n
Sum of

Difference AMD
Minimum
Elevation

Maximum
Elevation

Original 10 105 286.239 2.726 149.01 576.39

IDW 1 105 286.239 2.726 149.01 576.39

IDW 2.5 105 286.239 2.726 149.01 576.39

IDW 5 105 287.925 2.742 149.01 576.39

IMQF 1 105 286.181 2.726 148.87 576.45

IMQF 2.5 105 285.752 2.721 148.87 576.45

IMQF 5 105 288.107 2.744 148.88 576.45

OK 1 105 286.529 2.729 148.90 576.43

OK 2.5 105 286.084 2.725 148.90 576.43

OK 5 105 285.552 2.720 148.92 576.43

1st Order Local Polynomial 1 105 286.644 2.730 149.05 576.36

1st Order Local Polynomial 2.5 105 286.062 2.724 149.05 576.35

1st Order Local Polynomial 5 105 287.555 2.739 149.06 576.36

2nd Order Local Polynomial 1 105 286.721 2.731 148.94 576.40

2nd Order Local Polynomial 2.5 105 286.234 2.726 148.94 576.40

2nd Order Local Polynomial 5 105 285.852 2.722 148.96 576.39

MQF 1 105 286.188 2.726 148.87 576.45

MQF 2.5 105 285.766 2.722 148.88 576.44

MQF 5 105 288.154 2.744 148.89 576.44

CRS 1 105 286.192 2.726 148.87 576.46

CRS 2.5 105 285.753 2.721 148.87 576.45

CRS 5 105 288.110 2.744 148.88 576.45

TNSP 1 105 286.616 2.730 148.92 576.42

TNSP 2.5 105 285.449 2.719 148.93 576.41

TNSP 5 105 288.374 2.746 148.93 576.40

TPS 1 105 286.616 2.730 148.92 576.42

TPS 2.5 105 286.088 2.725 148.92 576.41

TPS 5 105 288.374 2.746 148.93 576.40

Institute, Redlands, CA). Next, we converted the
digital raster data to points, so that there was one point
with an elevation value for each cell in the elevation
grid. This point file was used as the basis for the
interpolations.

All interpolations were performed using the
Geostatistical Wizard function of ArcMap, which
allows the user to preview the interpolation while
adjusting the parameters, and offers an automated
optimization algorithm. The variogram for kriging was

fitted visually in the Wizard using a stable variogram
model. Through a combination of manual adjustments
and allowing the Wizard to optimize the model
parameters, we generated interpolation surfaces using
nine different interpolators: inverse distance weighted,
multiquadric, inverse multiquadric, thin plate spline,
spline with tension, completely regularized spline,
ordinary kriging, and first and second order local
polynomials. Other interpolators were tested, but were
rejected due to instability evident in the preview.
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Figure 2. Study area showing original 10m DEM.

We extracted the values of the interpolated
surfaces generated by the Geostatistical Wizard to
rasters at 5m, 2.5m, and 1m resolutions. The original
NED DEM and each interpolated raster were overlaid
with the surveyed control points (Weih 2010) and
raster elevation values extracted at each point. The
raster elevations were evaluated using the absolute
mean difference (AMD), which is calculated as:

(5)

where zi is the measured elevation at point i, is the
predicted elevation at point i, and n is the total number
of points sampled. The resulting AMD values were
then compared between interpolators and resolutions.
We also compared the maximum and minimum
elevations for each interpolated surface with the
original DEM.

Results and Discussion

Overall, we found little variation in the statistical
performance of each interpolator, with a range of less
than 0.03m between all AMD values (Table 1). This is
not too surprising, given the high density and regular
spacing of source data. IDW interpolation showed the
most similarity to the original DEM in terms of AMD
and elevation range. The lowest AMD value was for
spline with tension at 2.5m resolution, followed by
ordinary Kriging at 5m resolution. Both of these
elevation surfaces had better AMD values than the
original DEM.

Given the similarity in performance between
interpolators, processing time may be a more important
factor in deciding which method to use. We noted that
IDW and local polynomial interpolations were the
fastest, multiquadric, inverse multiquadric, regularized

spline, and ordinary kriging were intermediate, and
spline with tension and thin plate spline took the
longest. Also, the time to export the interpolation
surface to a raster format increases exponentially with
decreasing cell size. This is because the number of
cells in a raster increases proportionally to the square
of the inverse in the decrease in cell size. For example,
a 1m raster would have 100 times the number of cells
that a 10m raster of the same extent would. As the
number of cells increases, so does the processing time.
It should also be noted that data storage requirements
also increase with decreasing cell size.
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