595,436 research outputs found

    Multi-layer light-weight protective coating and method for application

    Get PDF
    A thin, light-weight, multi-layer coating is provided for protecting metals and their alloys from environmental attack at high temperatures. A reaction barrier is applied to the metal substrate and a diffusion barrier is then applied to the reaction barrier. A sealant layer may also be applied to the diffusion barrier if desired. The reaction barrier is either non-reactive or passivating with respect to the metal substrate and the diffusion barrier. The diffusion barrier is either non-reactive or passivating with respect to the reaction barrier and the sealant layer. The sealant layer is immiscible with the diffusion barrier and has a softening point below the expected use temperature of the metal

    Collective Diffusion of Colloidal Hard Rods in Smectic Liquid Crystals: Effect of Particle Anisotropy

    Full text link
    We study the layer-to-layer diffusion in smectic-A liquid crystals of colloidal hard rods with different length-to-diameter ratios using computer simulations. The layered arrangement of the smectic phase yields a hopping-type diffusion due to the presence of permanent barriers and transient cages. Remarkably, we detect stringlike clusters composed of inter-layer rods moving cooperatively along the nematic director. Furthermore, we find that the structural relaxation in equilibrium smectic phases shows interesting similarities with that of out-of-equilibrium supercooled liquids, although there the particles are kinetically trapped in transient rather than permanent cages. Additionally, at fixed packing fraction we find that the barrier height increases with increasing particle anisotropy, and hence the dynamics is more heterogeneous and non-Gaussian for longer rods, yielding a lower diffusion coefficient along the nematic director and smaller clusters of inter-layer particles that move less cooperatively. At fixed barrier height, the dynamics becomes more non-Gaussian and heterogeneous for longer rods that move more collectively giving rise to a higher diffusion coefficient along the nematic director.Comment: 24 pages, 10 figure

    The kinetics of titanium monosilicide growth studied by three-wavelength ellipsometry

    Get PDF
    Thin titanium layers (approximately 10 nm) have been grown on top of a clean Si(111) substrate. Heating these layers initiates a solid state reaction, yielding an amorphous monosilicide phase at about 350 °C. The kinetics of the solid state reaction has been followed using three-wavelength ellipsometry (340, 450 and 550 nm). A very coarse two-layer model has been applied in the analyses of the measured data: a top layer of pure titanium is consumed by a second layer of TiSi. The dielectric constants of titanium and TiSi are known and the layer thicknesses d1 and d2 have been fitted to the six ellipsometrical angles measured. These analyses reveal a diffusion-limited growth mechanism exhibiting two growth rates: a rapid initial rate followed by a slower final rate. The diffusion coefficient D of the rapid process and its activation energy Ea could be obtained: D = 2 × 10−15cm2s−1atT 370 °CandEa = 0.62 eV The two growth rates have been attributed to silicon diffusion along the grains and diffusion into the grains.\ud \u

    Diffusion behavior of delta-doped Si in InAlAs/InP heterostructures

    Get PDF
    Diffusion behavior of delta-doped Si in InAlAs and InP was studied by using secondary ion mass spectroscopy. A significant broadening of the profile due to postgrowth annealing was observed in In0.52Al0.48As. In contrast, the depth profile of delta-doped Si in InP was scarcely changed by annealing. This indicates that the diffusion coefficient of delta-doped Si in InP is much smaller than that in In0.52Al0.48As. Suppression of Si diffusion by using a delta-doped InP layer as the carrier supply layer (CSL) improves the thermal stability of the InP-HEMT structures

    Dynamical Heterogeneities and Cooperative Motion in Smectic Liquid Crystals

    Full text link
    Using simulations of hard rods in smectic-A states, we find non-gaussian diffusion and heterogeneous dynamics due to the equilibrium periodic smectic density profiles, which give rise to permanent barriers for layer-to-layer diffusion. This relaxation behavior is surprisingly similar to that of non-equilibrium supercooled liquids, although there the particles are trapped in transient (instead of permanent) cages. Interestingly, we also find stringlike clusters of up to 10 inter-layer rods exhibiting dynamic cooperativity in this equilibrium state.Comment: 10 pages, 4 figure

    Diffusion of Mn interstitials in (Ga,Mn)As epitaxial layers

    Full text link
    Magnetic properties of thin (Ga,Mn)As layers improve during annealing by out-diffusion of interstitial Mn ions to a free surface. Out-diffused Mn atoms participate in the growth of a Mn-rich surface layer and a saturation of this layer causes an inhibition of the out-diffusion. We combine high-resolution x-ray diffraction with x-ray absorption spectroscopy and a numerical solution of the diffusion problem for the study of the out-diffusion of Mn interstitials during a sequence of annealing steps. Our data demonstrate that the out-diffusion of the interstitials is substantially affected by the internal electric field caused by an inhomogeneous distribution of charges in the (Ga,Mn)As layer.Comment: 11 pages, 5 figure
    • …
    corecore