77,497 research outputs found
Using a desktop grid to support simulation modelling
Simulation is characterized by the need to run multiple sets of computationally intensive experiments. We argue that Grid computing can reduce the overall execution time of such experiments by tapping into the typically underutilized network of departmental desktop PCs, collectively known as desktop grids. Commercial-off-the-shelf simulation packages (CSPs) are used in industry to simulate models. To investigate if Grid computing can benefit simulation, this paper introduces our desktop grid, WinGrid, and discusses how this can be used to support the processing needs of CSPs. Results indicate a linear speed up and that Grid computing does indeed hold promise for simulation
Speeding-up the execution of credit risk simulations using desktop grid computing: A case study
This paper describes a case study that was
undertaken at a leading European Investment
bank in which desktop grid computing was used
to speed-up the execution of Monte Carlo credit risk simulations. The credit risk simulations were modelled using commercial-off-the-shelf simulation packages (CSPs). The CSPs did not incorporate built-in support for desktop grids, and therefore the authors implemented a middleware for desktop grid computing, called WinGrid, and interfaced it with the CSP. The performance results show that WinGrid can speed-up the execution of CSP-based Monte Carlo simulations. However, since WinGrid was installed on non-dedicated PCs, the speed-up
achieved varied according to users’ PC usage.
Finally, the paper presents some lessons learnt from this case study. It is expected that this paper will encourage simulation practitioners and CSP vendors to experiment with desktop grid computing technologies with the objective of speeding-up simulation experimentation
Scalable desktop grid system
Desktop grids are easy to install on large number of personal computers, which is a prerequisite for the spread of grid technology. Current desktop grids connect all PCs into a flat hierarchy, that is, all computers to a central server. SZTAKI Desktop Grid starts from a standalone desktop grid, as a building block. It is extended to include clusters displaying as single powerful PCs, while using their local resource management system. Such building blocks support overtaking additional tasks from other desktop grids, enabling the set-up of a hierarchy. Desktop grids with different owners thus can share resources, although only in a hierarchical structure. This brings desktop grids closer to other grid technologies where sharing resources by several users is the most important feature
Performance Analysis of Publish/Subscribe Systems
The Desktop Grid offers solutions to overcome several challenges and to
answer increasingly needs of scientific computing. Its technology consists
mainly in exploiting resources, geographically dispersed, to treat complex
applications needing big power of calculation and/or important storage
capacity. However, as resources number increases, the need for scalability,
self-organisation, dynamic reconfigurations, decentralisation and performance
becomes more and more essential. Since such properties are exhibited by P2P
systems, the convergence of grid computing and P2P computing seems natural. In
this context, this paper evaluates the scalability and performance of P2P tools
for discovering and registering services. Three protocols are used for this
purpose: Bonjour, Avahi and Free-Pastry. We have studied the behaviour of
theses protocols related to two criteria: the elapsed time for registrations
services and the needed time to discover new services. Our aim is to analyse
these results in order to choose the best protocol we can use in order to
create a decentralised middleware for desktop grid
A view at desktop clouds
Cloud has emerged as a new computing paradigm that promises to move into computing-as-utility era. Desktop Cloud is a new type of Cloud computing. It merges two computing models: Cloud computing and volunteer computing. The aim of Desktop Cloud is to provide Cloud services out of infrastructure that is not made for this purpose in order to reduce running and maintenance costs. This paper discusses this new type of Cloud by comparing it with current Cloud and Desktop Grid models. It, also, presents several research challenges in Desktop Cloud that require further attention
SZTAKI desktop grid: building a scalable, secure platform for desktop grid computing
In this paper we present a concept how separate desktop grids can be used as building blocks for larger scale grids by organizing them in a hierarchical tree. We describe an enhanced security model which satisfies the requirements of the hierarchical setup and is aimed for real-world deployment
PFS: A Productivity Forecasting System For Desktop Computers To Improve Grid Applications Performance In Enterprise Desktop Grid
An Enterprise Desktop Grid (EDG) is a low cost platform that gathers desktop computers spread over different institutions. This platform uses desktop computers idle time to run Grid applications. We argue that computers in these environments have a predictable productivity that affects a Grid application execution time. In this paper, we propose a system called PFS for computer productivity forecasting that improves Grid applications performance. We simulated 157.500 applications and compared the performance achieved by our proposal against two recent strategies. Our experiments show that a Grid scheduler based on PFS runs applications faster than schedulers based on other selection strategies.Fil: Salinas, Sergio Ariel. Universidad Nacional de Cuyo; ArgentinaFil: Garcia Garino, Carlos Gabriel. Universidad Nacional de Cuyo; ArgentinaFil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentin
EDGeS: a bridge between desktop grids and service grids
Desktop grids and service grids widely used by their different users communities as efficient solutions for making full use of computing power and achieving loads balances across Intranet or Internet. Nevertheless,little work has been done to combine these two grids technologies together to establish a seamless and vast grid resources pool. In this paper we will present a new European FP7 infrastructure project:EDGeS (enabling desktop grids for e-science), which aim to build technological bridges to facilitate interoperability between desktop grid and service grid. We give also a taxonomy of existing grid systems: desktop grids such as BONIC and XtremWeb, service grids such as EGEE. Then we describe furtherly our solution for identifying translation technologies for porting applications between desktop grids and service grids, and vice versa. There are three themes in our solution, which discuss actual popular bridging technologies, user access issues, and distributed data issues about deployment and application development
Leveraging simulation practice in industry through use of desktop grid middleware
This chapter focuses on the collaborative use of computing resources to support decision making in industry. Through the use of middleware for desktop grid computing, the idle CPU cycles available on existing computing resources can be harvested and used for speeding-up the execution of applications that have “non-trivial” processing requirements. This chapter focuses on the desktop grid middleware BOINC and Condor, and discusses the integration of commercial simulation software together with free-to-download grid middleware so as to offer competitive advantage to organizations that opt for this technology. It is expected that the low-intervention integration approach presented in this chapter (meaning no changes to source code required) will appeal to both simulation practitioners (as simulations can be executed faster, which in turn would mean that more replications and optimization is possible in the same amount of time) and the management (as it can potentially increase the return on investment on existing resources)
Renewable power for lean desktops in media applications
An integration of solar microgeneration to supply a low-power IT desktop, using the Power over Ethernet standards IEEE 802.3af/at as a low power distribution network avoiding transformer losses from DC generation to mains power AC and back to low-voltage DC and hence maximising efficiency. The resulting design points to applications in media technology where reducing grid power consumption is critical for improving sustainability, or where there are supply constraints, and indicates new directions in how we manage and consume power for IT devices
- …
