View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by WestminsterResearch

UNIVERSITY OF WESTMINSTER

"o

Yy

WestminsterResearch
http://www.wmin.ac.uk/westminsterresearch

Scalable desktop grid system.

Peter K. Kacsuk?
Norbert Podhorszkit
Tamas Kiss?

1 MTA SZTAKI (CR20), Computer and Automation Research Institute of the
Hungarian Academy of Sciences
2 School of Informatics, University of Westminster

This is a reproduction of CoreGRID Technical Report Number TR-0006, May
14, 2005 and is reprinted here with permission.

The report is available on the CoreGRID website, at:

http://www.coregrid.net/mambo/images/stories/TechnicalReports/tr-0006. pdf

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.

Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of WestminsterResearch.
(http://www.wmin.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

https://core.ac.uk/display/161115013?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

[G 1 European Research Network on Foundations, Software Infrastructures and Applications
o {% for large scale distributed, GRID and Peer-to-Peer Technologies

A Metwork of Excellence funded by the European Corrmission

Scalable Desktop Grid System

P. Kacsuk , N. Podhorszki
{kacsuk, pnorbert }@ztaki.hu

MTA SZTAKI (CR20)
Computer and Automation Research Institute of the Hungatieademy of Sciences
H-1518 Budapest, P.O. Box 63., Hungary

T. Kiss
T. Ki ss@west m nster. ac. uk
University of Westminster (CR37)
Cavendish School of Computer Science
115 New Cavendish Street, London W1W 6UW, UK

. CoreGRID Technical Report
(oreGRAMBD—_ Number TR-0006

—— May 24, 2005

Institute on System Architecture

CoreGRID - Network of Excellence
URL.: http://www.coregrid.net

CoreGRID is a Network of Excellence funded by the Europeam@gssion under the Sixth Framework Programme

Project no. FP6-004265

Scalable Desktop Grid System

P. Kacsuk , N. Podhorszki
{kacsuk, pnorbert}@ztaki.hu

MTA SZTAKI (CR20)
Computer and Automation Research Institute of the Hunga@demy of Sciences
H-1518 Budapest, P.O. Box 63., Hungary

T. Kiss
T. Ki ss@west m nster. ac. uk
University of Westminster (CR37)
Cavendish School of Computer Science
115 New Cavendish Street, London W1W 6UW, UK

CoreGRID TR-0006
May 24, 2005

Abstract

Desktop grids are easy to install on large number of persmoraputers, which is a prerequisite for the spread
of grid technology. Current desktop grids connect all P@s @nflat hierarchy, that is, all computers to a central
server. SZTAKI Desktop Grid starts from a standalone dgsktid, as a building block. It is extended to include
clusters as single powerful PCs, while using their locabuese management system. Such building blocks support
overtaking additional tasks from other desktop grids, énglithe set-up of a hierarchy. Desktop grids with different
owners thus can share resources, although only in a hiézatatructure. This brings desktop grids closer to other
grid technologies where sharing resources by several isstms most important feature.

1 Introduction

Originally, the aim of the researchers in the field of Grid weest anyone could offer resources for a Grid system, and
anyone can claim resources dynamically, according to theabneeds, in order to solve a computationally intensive
task. This twofold aim has been, however, not fully achiev@drrently, we can observe two different trends in the
development of Grid systems, according to these aims.

Researchers and developers in the first trend are creatimgl@&vice, which can be accessed by lots of users.
A resource can become part of the Grid by installing a preddfsoftware set (middleware). The middleware is,
however, so complex that it needs a lot of effort to maintdiherefore it is natural, that single persons do not offer
their resources but all resources are maintained by itistits, where professional system administrators takeafare
the hardware/middleware/software environment and ertberbigh-availability of the Grid. Examples of such Grid
infrastructures are the largest European Grid, the EGERlfliirg Grids for E-SciencE) and its Hungarian affiliate
virtual organisation, the HunGrid, or the NGS (NationaldS8ervice) in the UK. The original aim of enabling anyone
to join the Grid with one’s resources has not been fulfillegvéltheless, anyone who is registered at the Certificate
Authority of such a Grid and has a valid certificate can acties$rid and use the resources.

This research work is carried out under the FP6 Network oeHecce CoreGRID funded by the European Commission (Conitel-2002-
004265).

A complementary trend can also be observed for the othergatie original aim. Here, anyone can bring
resources into the Grid system, offering them for the commaoal of that Grid. Nonetheless, only some people
can use those resources for computation. The most well-lex@ample, or better to say, the original distributed
computing facility example of such Grids is the SETI@hormie [& Grids, similar to the concepts of SETI@home,
personal computers owned by individuals are connectedrteesservers to form a large computing infrastructure.
Such systems are called with the terms: Internet-basedbditdd computing, public Internet computing or desktop
grid; we use the term desktop grid from now on. A PC owner shqudt install one program package, register herself
on the web page of the Grid system and configure the progranmiplysgiving the address of the central server.
Afterwards, the local software runs in background (e.g. ssr@aensaver) and the owner does not need to take care of
the Grid activity of her computer. In a desktop grid, apgiimas can be performed in the well-known master-worker
paradigm. The application is split up into many small suktge.g. splitting input data into smaller, independenadat
units) that can be processed independently. Subtasksa@regsed by the individual PCs, running the same executable
but processing different input data. The central serven@Grid runs the master program, which creates the subtasks
and processes the incoming sub-results.

The main advantage of a desktop grid is its simplicity thileyang anyone to join. The main disadvantage is that
only problems computable by the master-worker paradignmbeamplemented on such a system. Desktop grids have
already been used at world-wide scales to solve very larggatational tasks in cancer research [2], in search for the
sign of extraterrestrial intelligence [1], climate prethas [3] and so on.

Desktop grids can be used efficiently and conveniently inllemacales as well. We believe that small scale
desktop grids can be building blocks of a larger Grid. Thi ieew concept that can bring closer the two directions of
Grid developments. It is easy to deploy desktop grids in kgtalle organisations and to connect individual PCs into
it therefore we get a grid system that can spread much fdstartieavy-weight grid implementations. On the other
hand, if such desktop grids can share the resources anatineérs can use others’ desktop grid resources, the many
user conception of the other trend is also realised. Stepartts the collaboration of desktop grids are the support
of clusters — so they are easy to include as a resource —, eharttiy of desktop grids within a large organisation
with several levels of hierarchy, and the resource sharingrg independent desktop grids in different organisations
SZTAKI Desktop Grid starts from a standalone desktop gisda duilding block. It is extended to include clusters as
single powerful PCs, while using their local resource mamagnt system. Such building blocks support overtaking
additional tasks from other desktop grids, enabling theupaif a hierarchy.

In this paper, the SZTAKI Destop Grid is described, from tlasib single desktop grid to the support of clusters
and to the hierarchy of desktop grids.

1.1 Reéated work
BOINC

BOINC (Berkeley Open Infrastructure for Network Computisge [4, 5]) is developed by the SETI@home group
in order to create an open infrastructure that could be tle Bz all large-scale scientific projects that are attvacti
for public interest and that can use millions of personal poters for processing their data. This concept enables
millions of PC owners to install single software (the BOINI¬) and then, each of them can decide what project
they support with the empty cycles of their computers. Thenmo need to delete, reinstall and maintain software
packages to change among the projects. Actually as of Ja@08s5, the overall computational power of the more
than 80.000 participants of BOINC project is about 106 Te@FS, providing the most powerful supercomputer
of the world, which, in contrast to the original SETI@homsetdbuted computing facility, can run several different
distributed applications.

The properties of BOINC can be used for smaller scale, coimdpithe power of the computers at institutional
level, or even at department level. The SZTAKI Desktop Gsidased on BOINC since this is a well-established open
source project that already proved its feasibility andauidity. The basic infrastructure of SZTAKI Desktop Grid is
provided by a BOINC server installation and the connectes &G given organisational level.

XtremWeb

XtremWeb [6] is a research project, which, similarly to B@Naims to serve as a substrate for Global Computing
experiments. Basically, it supports the centralised petfuservers and PCs as workers. In addition, it can also be

CoreGRID TR-0006 2

used to build a peer-to-peer system with centralised chntieere any worker node can become a client that submits
jobs. It does not allow storing data, it allows only job subsin.

Commercial Desktop Grids

There are several companies providing a Desktop Grid soldtr enterprises [7, 8, 9, 10]. The most well-known
examples are the Entropia Inc, and the United Devices. Thgstems support the desktops, clusters and database
servers available at an enterprise. Basically, they ared@viss-based solutions, however, understanding the needs of
the commercial users, clusters and mainframes can be dedhieto the desktop grid as well, mostly based on the
Globus toolkit [11]. Entropia can completely seclude theanion of the desktop grid applications from other pro-
cesses running on the PC (sandboxing) thus, ensuring tideggplications cannot access data on the client machines.
Strong cryptography ensures also privacy of applicatiada:dancoding protects from stealing data on the network,
digital signatures provides safe identification and pristéom intentional falsification of data.

DC-API
/) |)
Scheduler Workumt
Data Server
Server Queue

Core client d Core client

Figure 1: BOINC-based Desktop Grid infrastructure

2 SZTAKI Desktop Grid

The basic idea of the SZTAKI Desktop Grid is to first provideasio desktop grid infrastructure, which is easy to
install, to maintain and to use at an organisational levélis Dasic infrastructure enables us to connect PCs within
a department and to run (small) distributed projects on &coBd, clusters are supported as they are increasingly
available at many departments of institutions and smallpames as well. Third, the hierarchical structure of an
organisation needs the possibility of connecting such defental desktop grids into an infrastructure, where large
projects can use more resources than available within goartteent. Fourth more generally, the idea is also to make
possible the resource sharing among “friendly”, i.e., ndiierarchical relation, desktop grids. This way, sma#llsc
desktop grids, which are easy to install, can be the buildlogks of a large grid infrastructure.

The SZTAKI Desktop Grid is based on the BOINC infrastrucia® we believe that it provides everything that
is needed for a basic desktop grid with one (running on a eingdchine or on multiple machines) server and many
workers. The infrastructure for executing computatioaaks and for storing data sets is used only. Its support for

CoreGRID TR-0006 3

user credits, teams and the web-based discussion forumm®trelevant for an organisation but, of course, all these
features are available if needed.
The desktop grid within an organisation (institution, ostja department) enables us

e to connect PCs in the organisation into the desktop grid,
e toinstall several distributed computing projects on thskéiep grid, and
e to use the connected PCs to compute subtasks of those groject

As Figure 1 shows, there is a Scheduler Server and a Datar$ethe BOINC infrastructure, however, they can
be simply installed on one computer but also they can existuitiple instances as well, depending on the central
processing needs of a project. Scheduler Server storedathiation about available platforms, application praogsa
subtasks, connected machines (and users) and resultbfasks. Data Server stores all executables, input and butpu
files. On each PC, a core client is running that downloadsiegtjn client executables, subtasks (describing actual
work) and input files to perform the subtasks. The main apfiba on the top level has to generate the sequential
subtasks and to process subresults. BOINC gives tools gmbsifor generic distributed projects to do that, however,
SZTAKI provides a much simpler and easier-to-use API, the ARD. The use of this API enables scientist just
concentrate on task generation and processing resultswikmowing even what grid infrastructure is serving the
processing needs. Of course, the use of the APl is not obligaine can use BOINC's tools as well.

2.1 Supporting clusterswithin SZTAKI Desktop Grid

BOINC in itself does not provide any support for clusterdds a server that generates work and there are clients that
do the work (actually several ones on an SMP node, one sup&asRPU). The need for cluster support is clear. No
one would like to develop a sophisticated distributed ayapibn that uses partly the desktop grid and partly a cluster
all with different concepts, APIs and syntaxes. Clustatsanagement concept is more general than the execution
of work units (subtasks) within a desktop grid therefore, lditter one can be mapped onto the previous one. There
are five possibilities in extending the BOINC infrastruetfor cluster support.

, /
Scheduler

Cluster

Figure 2: Clusters 1. All machines are clients

1. A desktop grid client is installed on all machines of thestér and connected to the server of the desktop grid
of the given organisation, i.e. all machines of the clustetipipate individually, as a normal PC in the desktop
grid.

CoreGRID TR-0006 4

/ /
Scheduler

Figure 3: Clusters 2: stand-alone desktop grid

2. A complete desktop grid is installed on the cluster, with server on the front-end node, and all machines
connected to it. This way, the cluster can participate irgeladesktop grid as one leaf element in a hierarchy,
see section 2.2.

3. Anindependent, higher-level broker distributes worloamclusters and desktop grids.

4. The server of the desktop grid should be aware of the pceseha cluster and submit jobs instead of work
units,

5. An extended version of a single desktop grid client isalstl onto the cluster’s front-end, which converts
desktop grid work units into traditional jobs and submitrthto the cluster’s job management.

Thefirst possibilityis easy to achieve, only the desktop grid client should ltalilesl on the machines, see Figure 2.
The configuration of BOINC core client consist of defining giséered user’s ID and the project server URL. Settings
for the user’s preferences are defined on the project wekisemd settings are propagated to all clients with the same
user ID. BOINC provides easy install on multiple machinesdabon one installation therefore, the whole procedure
is very easy. Compare this with the installation and conéijan of the LHC Grid middleware (of course, the latter
providing more functionality).

However, if the cluster is not a brand new one or the ownerstlavant to use it exclusively for the desktop grid, a
job manager is surely installed and used on that clustes ffieians, that the job manager and the desktop grid clients
are competing for the spare cycles of the computers. The pager’s role is to coordinate the resources within a
cluster and to balance the load on it. Desktop grid clientssubtasks coming from the desktop grid server are out of
the view for the job manager therefore, it is not able to figrcproperly.

Thesecond possibilitygsee Figure 3) by-passes the job manager as well, havingithe drawback and therefore,
it is not recommended. However, if the hierarchy of desktagsgare a reality, this option can be considered as a free
solution for connecting a cluster into an existing desktag.g

Usually, we may think at first that if different things are te bonnected and to work together, there is a need
for a higher-level actor that distributes work among thdgegs and takes care of the good balance, as irihing
possibility Thatis, in our case, an appropriate broker is needed tahtéso gather information about the status of the
different entities (desktop grids and clusters), to deeitiere to send the next piece of work and to convert subtasks
into work units or jobs according to the target system, sgariéi4. Such an approach is followed in the Lattice project

CoreGRID TR-0006 5

; /
| Scheduler

~

—>s>

work Desktop | Server
\ .
unit Grld /"\ \
Broker
job
Cluster

Y

Job manager

L~

Figure 4: Cluster 3: High-level brokering of jobs

[12], which is developing a community-based Grid systent ihi@grates Grid middleware technologies and widely
used life science applications. This system deals withttoal jobs, i.e. executables, input data and definition of
requirements and preferences. Jobs are submitted to a ewbdéision of the Condor-G broker [13] that sends a job
either to a Globus-based grid or to a BOINC-based desktap gri

In this case, a desktop grid is just one element among otlEfferent grid implementations can be connected
together this way if appropriate conversion between thfewint concepts, representations and syntaxes can be man-
aged.

The fourth possibilitykeeps the heading role of the desktop grid server, see Figuhe this scenario, there is
a desktop grid as “the grid”, in which clusters are connedterh “below”. The server should be configured in a
way that it knows about the cluster, its static status infation (size, benchmark information) and its dynamic status
information (number of available machines) — the same wayha broker of the third option should do. As in the
basic desktop grid, work is distributed by the server; haweiv can decide to send some work to the cluster. In this
case, the work unit representation should be convertedetgoth representation, which can be submitted to the job
manager of the cluster.

This solution needs lot of development of the server’s im@atation. A monitoring system should be used to get
status information about the cluster, such informatiorutthbe stored and handled somehow, decision logic should
be altered; all these tasks are also part of the third opBesides that, the internal work unit should be converteal int
a traditional job and the server should be able to contagothenanager of the cluster remotely and submit jobs. As
we mentioned, work unit representations can be mapped obt@presentations therefore, this is quite a simple task.

Thefifth possibilityis the most elegant way of including clusters into the dgskpiad, see Figure 6. In a desktop
grid, client machines are connecting to the server and askdi; this is called pull-mode. In contrast, job managers
and grids of the first trend mentioned in the introductionmitlvork (jobs) to selected resources (push-mode). In this
option, clusters can participate in the pull-mode executiithe desktop grid. A desktop grid client originally asks f
a given amount of work to be processed on the given machineekter, with some modification, it can ask for many
work units, transform them into jobs and submit them intowsidr. The desktop grid server can see it as a normal,
but somewhat very powerful client. In this solution, onlg ttlient should be modified, and since it is running on the
front-end node of the cluster, information gathering arilgobmission are easy to perform.

We have chosen the fifth possibility for SZTAKI Desktop Gtiécause this way clusters are seamlessly integrated
into it, it keeps the role of the job manager of the clusterianequires less modifications than the others.

CoreGRID TR-0006 6

, /
Scheduler

Cluster

A 4

Job manager

SN

Figure 5: Clusters 4: Submit jobs from server

2.2 Hierarchical Desktop Grid

Departments can be satisfied by using the basic SZTAKI Desiiad with cluster support. All PCs and clusters
are connected into one desktop grid and distributed pojean use all the resources. It is natural to ask, what if
there are several departments using their own resourcepandently but there is an important project on a higher
organisational level (e.g. a school of a university, a ursiitg or a company). Having the previous set-up in the
departments, only one of the departments can be selected the project. Of course, the ideal would be to use all
departments’ resources for that project. Besides agaielojgymg something new component (e.g. a broker) to control
over the different desktop grids, there is the possibilityptiild a hierarchy of desktop grids — if the building blocks
are such that they enable that, see Figure 7. In such a Higratesktop grids on the lower level can ask for work
from higher level (pull mode), or vice versa, desktop gridsfte higher level can send work to the lower levels (push
mode).

SZTAKI Desktop Grid supports the pull mode, as this is thgiodl way how desktop grids work. The control of
important work on the higher level can be realised with gtydrandling on the lower level. A basic SZTAKI Desktop
Grid can be configured to participate in a hierarchy, thabigonnect to a higher-level instance of SZTAKI Desktop
Grid (parent node in the tree of the hierarchy). When thedahmilde (a stand-alone desktop grid) has less work than
resources available, it asks for work from the parent. Thiemtanode can see the child as one powerful client, exactly
as in the case of a cluster, which asks for work units.

Of course, the BOINC-based server has to be extended to eslofk from somewhere else (i.e., behave similarly
as a client) when there is not enough work locally. Fortugathis can be done separately in the case of BOINC.
Work units are generated by the running applications angldhe put into a database of the BOINC server. Whether
a work unit arrives from outside or from a local applicatidrjoes not matter. Therefore, it is enough to create a new
daemon on the server machine that observes the status aéshtog grid. When client machines’ requests for work
are rejected — or when the daemon predicts that this will Bajgpon — the daemon can turn to the parent desktop grid
and ask for work units. The daemon behaves towards the paseanBOINC client, asking for work and reporting
results. However, it puts all those work units into the datsbof the local server thus, client machines will process
them and give the results. The daemon should also wait akddwdhe incoming results and send them back to the
parent.

However, there is the issue of applications when we want tmeot two BOINC-based desktop grids. In the
BOINC infrastructure, application executables shoulddggstered in the server and signed with a private key (of the
project). Clients always check if the downloaded execetéblegistered and valid thus, avoiding the possibility of

CoreGRID TR-0006 7

, /
Scheduler

Cluster
|

DG client

1

Job manager

Figure 6: Clusters 5: Special DG client on the front-end

spreading arbitrary code by hackers. A parent desktop g ialien to the child in this sense; executables registered
in the parent desktop grid should be registered before woitk using that executables can be processed.

In BOINC, for security reasons, the private key of a projécidd be stored on a machine that is separated from the
network. Application client executables should be signgdhie administrator of the projects and only the signature
should be copied from that separated machine. Thereforenwaew executable is to be installed on the server,
manual work of the administrator is needed. The parent dpgkid cannot push application executables directly onto
the child desktop grid, as it has signatures with differaojert private keys.

SZTAKI Desktop Grid allows two options. The secure optiomisequire the manual installation of executables
(of the parent) on the child desktop grids before using th€his is feasible within an organisation since the owners
of the departmental desktop grids are contacted anywayebgdministrators of the higher level. The security of this
solution is the same as in BOINC.

The other option is to enable the automatic installatiorheféxecutables on the child desktop grid. Its daemon
on the server, when receiving work unit from the parent, khaehether the referred executable is already installed
or not. If not, it downloads from the parent and checks itegnity, similarly as core clients do. This can be done
since the daemon behaves exactly as a core client; it knaysutblic key of the parent’s project and the executable’s
signature can be checked. If the executable is valid, thendaesigns the executable with the private key of the local
project and installs into the servers database. Core slathe child desktop grid receive the executable as behgngi
to the local project. However, the daemon needs to use thatprkey of the project, i.e. the private key should be
stored on the server machine. This implies, that if the sasvBacked and the key is stolen, the hacker can install
new executables on the server and spread it among the clasttines. Therefore, this option is suggested only for
administrators who take care of the server’s security aadgénver is well defended.

2.3 SZTAKI Desktop Grid

SZTAKI is setting up a central server for demonstration fongarian institutes to demonstrate the easy use of desktop
grids. People can first just connect their PCs to the demeagtrdhjius, participating in one large-scale computing
project; similarly, as people all over the world particpat BOINC, XtremWeb and Grid.org based projects. If they
are interested and they have a problem that needs lot of dimgmower to solve, SZTAKI helps to create a new
project and provides the central server for that projece pitoject owners should provide the PCs and clusters for the
standalone desktop grid to work on that project. FinallyJSEI can help to set-up and maintain their own server and
to open the project to the public.

CoreGRID TR-0006 8

f /
Scheduler

Scheduler
Server

' Desktop Grid
53

Scheduler
Server

" Desktop Grid
0)

Figure 7: Hiearchy of desktop grids

The hierarchical desktop grid will also be soon availablediganisations on the stipulation that the security level
of spreading executables among participating PCs in thenisgtion is either somewhat less than in BOINC or all
executables should be signed by human administrators tavalk of the hierarchy.

3 Conclusion

In this paper, SZTAKI Desktop Grids structure is presentiglgussing the possibilities of the support of clusters
within a desktop grid. SZTAKI Desktop Grid uses the BOINCrastructure as a basic building block for connecting
PCs to solve large scale distributed programs. It is extgbgiehe support of clusters by installing a modified version
of the PC client that converts incoming subtasks into trawlitl jobs and submits them to the cluster’s job manager.
Such a desktop grid, as a building block, is then used to kaifderarchy of them in an institute or company to
provide individual desktop grids to the lower level orgatienal units but also to provide a larger infrastructure to
solve problems on the higher level. The ability to propagatek from one desktop grid to the other (but only in a
hierarchy) is a step forward to a grid infrastructure, whigleasy to install and which has several users that share
resources; two features that are not present at once in’toglégs.

References

References

[1] D.P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, D. Werter. SETI@home: An Experimentin Public-Resource
Computing.Communications of the ACMOoI. 45 No. 11, November 2002, pp. 56-61

[2] United Devices Cancer Research Project. URItp://www.grid.org/projects/cancer

[3] D. A. Stainforth et al. Uncertainty in the predictionstbe climate response to rising levels of greenhouse gases.
Nature 27 January 2005, vol 433.

[4] D. P. Anderson. BOINC: A System for Public-Resource Cotmgy and Storage. 5th IEEE/ACM
International Workshop on Grid Computing, November 8, 200Rittsburgh, USA. Available at:
http://boinc.berkeley.edu/grigdaper04.pdf

[5] BOINC Home Page. URLhttp://boinc.berkeley.edu

CoreGRID TR-0006 9

[6] G. Fedak, C. Germain, V. Nri and F. Cappello. XtremWeb: én@ric Global Computing System. CCGRID2001
Workshop on Global Computing on Personal Devices, May 2[EHE Press.

[7] Grid MP, United Devices Inc. URLhttp://www.ud.com
[8] Platform LSF, Platform Computing. URIhttp://www.platform.com

[9] A. A. Chien. Architecture of a commercial enterprise ktep Grid: the Entropia system. IrGrid Computing
Making the Global Infrastructure a Realitizd. F. Berman, A. Hey and G. Fox. John-Wiley & Sons, Ltd. Gaap
12. 2003

[10] DeskGrid, Info Design Inc. URLhttp://www.deskgrid.com

[11] I. Foster, C. Kesselman. Globus: A Metacomputing Istinacture ToolkitIntl J. Supercomputer Applications
11(2):115-128, 1997.

[12] Myers, D. S., and M. P. Cummings. Necessity is the motiié@mvention: a simple grid computing system using
commodity toolsJournal of Parallel and Distributed Computingolume 63, Issue 5, May 2003, pp. 578-589.

[13] James Frey, Todd Tannenbaum, lan Foster, Miron Livng, &teven Tuecke. Condor-G: A Computation Man-
agement Agent for Multi-Institutional Grids. Proceedirgfghe Tenth IEEE Symposium on High Performance
Distributed Computing (HPDC10) San Francisco, CaliforAiagust 7-9, 2001.

CoreGRID TR-0006 10

