1,819,622 research outputs found

    Time-Delay Polaritonics

    Full text link
    Non-linearity and finite signal propagation speeds are omnipresent in nature, technologies, and real-world problems, where efficient ways of describing and predicting the effects of these elements are in high demand. Advances in engineering condensed matter systems, such as lattices of trapped condensates, have enabled studies on non-linear effects in many-body systems where exchange of particles between lattice nodes is effectively instantaneous. Here, we demonstrate a regime of macroscopic matter-wave systems, in which ballistically expanding condensates of microcavity exciton-polaritons act as picosecond, microscale non-linear oscillators subject to time-delayed interaction. The ease of optical control and readout of polariton condensates enables us to explore the phase space of two interacting condensates up to macroscopic distances highlighting its potential in extended configurations. We demonstrate deterministic tuning of the coupled-condensate system between fixed point and limit cycle regimes, which is fully reproduced by time-delayed coupled equations of motion similar to the Lang-Kobayashi equation

    Time-Delay Interferometry

    Get PDF
    Equal-arm interferometric detectors of gravitational radiation allow phase measurements many orders of magnitude below the intrinsic phase stability of the laser injecting light into their arms. This is because the noise in the laser light is common to both arms, experiencing exactly the same delay, and thus cancels when it is differenced at the photo detector. In this situation, much lower level secondary noises then set overall performance. If, however, the two arms have different lengths (as will necessarily be the case with space-borne interferometers), the laser noise experiences different delays in the two arms and will hence not directly cancel at the detector. In order to solve this problem, a technique involving heterodyne interferometry with unequal arm lengths and independent phase-difference readouts has been proposed. It relies on properly time-shifting and linearly combining independent Doppler measurements, and for this reason it has been called Time-Delay Interferometry (or TDI). This article provides an overview of the theory and mathematical foundations of TDI as it will be implemented by the forthcoming space-based interferometers such as the Laser Interferometer Space Antenna (LISA) mission. We have purposely left out from this first version of our ``Living Review'' article on TDI all the results of more practical and experimental nature, as well as all the aspects of TDI that the data analysts will need to account for when analyzing the LISA TDI data combinations. Our forthcoming ``second edition'' of this review paper will include these topics.Comment: 51 pages, 11 figures. To appear in: Living Reviews. Added conten

    A CMOS analog continuous-time delay line with adaptive delay-time control

    Get PDF
    A CMOS analog continuous-time delay line composed of cascaded first-order current-domain all-pass sections is discussed. Each all-pass section consists of CMOS transistors and a single capacitor. The operation is based on the square-law characteristic of an MOS transistor in saturation. The delay time per section can either be controlled by an external voltage or locked to an external reference frequency by means of a control system which features a large capture range. Experimental verification has been performed on two setups: an integrated cascade of 26 identical all-pass sections and a frequency-locking system breadboard built around two identical on-chip all-pass section

    Solid state variable time delay

    Get PDF
    Variable time delay line does not require use of a magnetic field to control a time delay, and can both amplify and delay a signal. Device is inexpensive and space saving, it does not require mecanically moving components, eliminating detrimental vibrations in a sensitive environment

    On the Gravitomagnetic Time Delay

    Get PDF
    We study the gravitational time delay in ray propagation due to rotating masses in the linear approximation of general relativity. Simple expressions are given for the gravitomagnetic time delay that occurs when rays of radiation cross a slowly rotating shell and propagate in the field of a distant rotating source. Moreover, we calculate the local gravitational time delay in the Goedel universe. The observational consequences of these results in the case of weak gravitational lensing are discussed.Comment: 15 pages, 1 figure, revised version submitted to Phys. Lett.
    • 

    corecore